
IRIS-HEP Project Proposal: Improving Performance of Particle Tracking Algorithms in a
Muon Collider

Chris Sellgren, UC Santa Barbara
Mentors: and Sergo JindarianiSimone Pagan Griso
Dates: June 26 - September 15, 2023

Introduction
Particle colliders are currently the most powerful tool for examining the fundamental

forces and constituents of our universe. Examining the interactions of particles at high energies
allows physicists to test our current predictions and search for new physics beyond the Standard
Model. Collider discoveries can provide insight into cosmological mysteries and even support
research in other industries, such as medicine and computer science.

The particle colliders currently in use primarily study proton-proton collisions (such as
the LHC), or electron-positron collisions (such as the LEP). However, since the 1980s, physicists
have discussed the possibility of developing an experiment that would collide muons. Unlike the
hadrons of the LHC, muons are fundamental particles, but because they are much heavier than
electrons, they lose over a million times less energy to synchrotron radiation. A muon collider
would thus be able to reach TeV energy scales and probe fundamental physics with a compact
and energy-efficient design. However, because muons have a lifetime of about 2 µs at rest, muon
colliders face unprecedented challenges from particle decay creating a beam-induced background
(BIB). The detection design of a muon collider must be able to isolate tracks from the collision
products, which can involve a searching through a signal:background ratio on the order of 10-6.

Project Proposal
This project will work to improve the performance of algorithms used for track

reconstruction. The algorithms rely on a large set of parameters, which must be optimized to
maximize the likelihood of producing a correct trajectory while suppressing the chances of
producing a fake trajectory. Because the high multiplicity of measurements in a muon collider
experiment creates a large number of fake measurements, the tracking parameters must be
configured carefully to maximize efficiency of the algorithms. This project will involve a
systematic study of algorithm performance, culminating in the creation of a standard set of
requirements that will be used as a baseline for track reconstruction.

The current tracking algorithms can also be significantly improved in their computational
efficiency. Currently, high RAM usage makes running simulations at scale difficult.
Incorporating a multi-threading capacity will reduce the time required for simulation and
analysis by a factor of at least 5. However, the current design of the tracking algorithms uses an
iterative approach that would challenge multi-threading. Parallel processes must ensure to not
find the same trajectory, so a global pool of measurements must be shared among the processes.

mailto:spagangriso@lbl.gov


Designing the algorithms to run in parallel will require a logical redesign informed by user
discretion and testing.

Incorporating multi-threading will involve transitioning to the new Key4HEP software
stack. Depending on the status of Key4HEP by the time the project begins in the summer, the
project will either focus on improving algorithm performance through parameter optimization, or
improving computational efficiency through a threading-supported redesign. The timeline below
reflects both possible project designs.

Timeline

Week Proposed Activity

1-2 Familiarizing with software and tools, testing performance of current design and
identifying regions of improvement, determining primary focus for output.

3-4 Run simulations to optimize parameters for track reconstruction OR
Design a preliminary algorithm to incorporate multi-threading by dividing
detector design into subcomponents to be handled by parallel processes.

5-6 Create tools and metrics to assess and compare algorithm performance OR
Adjust algorithm design to handle boundary cases, such as overlap of detector
components or particles moving between different subcomponents/processes.

7-8 Adjust and expand algorithm design based on performance needs, implement
algorithms to filter output tracks OR
Test, improve, or redesign threaded algorithm design for multiple cases.

9-10 Continue expanding algorithm design, begin compiling work in a consistent
framework that can be shared with collaborators

11-12 Finalizing work. Debugging and cleaning code, optimizing efficiency, writing
documentation for shared framework, preparing final presentation.

Software deliverables may include redesigned algorithms built for multi-threading capacity, or
improved algorithms based on optimization of parameters that includes a standard of common
tracks to be shared with collaboration. Other deliverables may include written reports of track
requirement standards, metrics for comparing performance, and plots comparing different
algorithm designs.


