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Enabling auto-differentiation for Awkward Array functions 

 
Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, 
mixed types, and missing data, using NumPy-like idioms. Auto-differentiation (also known as 
“autograd” and “autodiff”) is a technique for computing the derivative of a function defined by an 
algorithm, which requires the derivative of all operations used in that algorithm to be known. The 
IRIS-HEP Analysis Systems group is investigating whole-analysis differentiability to improve analysis 
optimization (​https://gradhep.github.io/center/​). However, not all operations in Awkward Array can be 
differentiated, so an analysis that uses this library fully can’t take advantage of this new technique. 
 
There are several popular machine learning frameworks that make use of auto-differentiation. Out of 
these, Tensorflow, PyTorch and JAX are the most popular ones. This project seeks to compute 
derivatives for operations in Awkward Arrays, and integrate them with these libraries so that all 
functions containing Awkward Arrays can be differentiated by them. The ​grad-hep​ group of IRIS-HEP 
is primarily focused on end-to-end analysis, and they use JAX as their primary library for 
auto-differentiation. Awkward Arrays and Uproot are becoming a standard within the particle physics 
community and without having derivatives of Awkward Array operations in place, the entire idea 
behind whole-analysis differentiability(​neos​) would be unable to proceed. One of the major parts of 
this project, hence, aims to enable JAX to differentiate on functions containing Awkward Arrays.  
 
To have JAX interact and differentiate functions which contain Awkward Arrays, we need to 
implement Jacobian Vector Products of it’s various data structures like ListOffsetArray, UnionArrays, 
RecordArrays so on for its various reducers as well as for element wise operations. The JVPs for 
element wise operations like addition, subtraction and multiplication are relatively simple to write. The 
JVP for reducers, such as ​ak.sum​ and ​ak.prod​(where ​ak​ is an abbreviation for ​awkward1​) 
however, need some thought before they can be implemented for Awkward Arrays. Apart from these, 
this project would also explore how these custom JVPs can be interfaced with JAX so that all 
functions involving awkward arrays can be differentiable by JAX. One possible way to go about this is 
probably by using NEP-18 which provides for overriding ​__array_function__​ and this is where 
we can introduce the JVPs for Awkward Arrays and it’s various primitives / functions operations. Then 
for each function operation involving awkward arrays like sum, product, difference, max, min and so 
on we would have to define a JAX primitive, which would in turn tell JAX how to deal with such 
primitives/operations and it would make the functions involving Awkward Arrays transformable and 
JAX-traceable. More on this ​here​.  
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After the JAX interfacing is done, we can start work on interfacing Awkward Arrays with PyTorch and 
Tensorflow. Out of these, Tensorflow has an established Ragged Tensor class type, which very 
closely corresponds to Awkward Array’s List Type and List-Offset Array type. Tensorflow has defined 
it’s ​encoding​ for Ragged Tensors which is very similar(For example, Tf’s ​values​ and ​row_splits 
correspond to ak’s ​data​ and ​index​ respectively) to ​ak.layout.ListOffsetArray​’s inner data 
encoding. This would enable a zero-copy transfer from Awkward Arrays to Tensorflow’s Ragged 
Tensor. PyTorch’s Nested Tensor is still under active development, with a prototype which was 
planned to be released by the end of October 2020. When it gets merged into the upstream PyTorch 
repository, we'll have to look for a similar encoding and some helper functions that would help enable 
a zero-copy transfer.  
 
The final goal of this project would be to write a collection of small examples which would help users 
to get up to speed with auto-differentiation of Awkward Arrays with JAX. 
 

Timeline 

 
Week 1​:  
● Getting familiar with JAX - which includes studying the inner workings of JAX functions as 

well as understanding how it integrates with Numpy.  
 

Week 2 
● Writing JVPs for element wise operations and researching about reducers. 

 
Week 3​:  
● Continuing study about the JVPs for the reducers and writing it up. 

 
Week 4​:  
● Using the knowledge from Week 1, to complete the JAX and Awkward Array interfacing. 

 
Week 5​:  
● A buffer period for writing tests, and resolving any issues that might crop up. 

 
Week 6​: 
● Completing the interfacing of Awkward Arrays with Tensorflow’s Ragged Tensor 

 
Week 7​:  
● Reading up on PyTorch itself and PyTorch’s Nested Tensor to understand how to enable 

zero-copy transfer from Awkward Arrays to PyTorch. 
 

Week 8:  
● Completing the interfacing of Awkward Arrays with PyTorch’s Nested Tensor. 
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Week 9​:  
● A buffer period for writing tests, documentation and resolving any issues that might crop up.  

 
Weeks 10 and 11​:  
● Keep working on the notebook example. 

 
Week 12​:  
● Period to prepare for the fellowship presentations. 
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