
IRIS-HEP Fellowship Proposal
Anish Biswas

(Manipal Institute Of Technology)

Mentor: Jim Pivarski
Duration: 9 January 2021 - 3 April 2021

Enabling auto-differentiation for Awkward Array functions

Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records,
mixed types, and missing data, using NumPy-like idioms. Auto-differentiation (also known as
“autograd” and “autodiff”) is a technique for computing the derivative of a function defined by an
algorithm, which requires the derivative of all operations used in that algorithm to be known. The
IRIS-HEP Analysis Systems group is investigating whole-analysis differentiability to improve analysis
optimization (​https://gradhep.github.io/center/​). However, not all operations in Awkward Array can be
differentiated, so an analysis that uses this library fully can’t take advantage of this new technique.

There are several popular machine learning frameworks that make use of auto-differentiation. Out of
these, Tensorflow, PyTorch and JAX are the most popular ones. This project seeks to compute
derivatives for operations in Awkward Arrays, and integrate them with these libraries so that all
functions containing Awkward Arrays can be differentiated by them. The ​grad-hep​ group of IRIS-HEP
is primarily focused on end-to-end analysis, and they use JAX as their primary library for
auto-differentiation. Awkward Arrays and Uproot are becoming a standard within the particle physics
community and without having derivatives of Awkward Array operations in place, the entire idea
behind whole-analysis differentiability(​neos​) would be unable to proceed. One of the major parts of
this project, hence, aims to enable JAX to differentiate on functions containing Awkward Arrays.

To have JAX interact and differentiate functions which contain Awkward Arrays, we need to
implement Jacobian Vector Products of it’s various data structures like ListOffsetArray, UnionArrays,
RecordArrays so on for its various reducers as well as for element wise operations. The JVPs for
element wise operations like addition, subtraction and multiplication are relatively simple to write. The
JVP for reducers, such as ​ak.sum​ and ​ak.prod​(where ​ak​ is an abbreviation for ​awkward1​)
however, need some thought before they can be implemented for Awkward Arrays. Apart from these,
this project would also explore how these custom JVPs can be interfaced with JAX so that all
functions involving awkward arrays can be differentiable by JAX. One possible way to go about this is
probably by using NEP-18 which provides for overriding ​__array_function__​ and this is where
we can introduce the JVPs for Awkward Arrays and it’s various primitives / functions operations. Then
for each function operation involving awkward arrays like sum, product, difference, max, min and so
on we would have to define a JAX primitive, which would in turn tell JAX how to deal with such
primitives/operations and it would make the functions involving Awkward Arrays transformable and
JAX-traceable. More on this ​here​.

1

https://gradhep.github.io/center/
https://gradhep.github.io/center/
https://github.com/gradhep/neos
https://jax.readthedocs.io/en/latest/notebooks/How_JAX_primitives_work.html

After the JAX interfacing is done, we can start work on interfacing Awkward Arrays with PyTorch and
Tensorflow. Out of these, Tensorflow has an established Ragged Tensor class type, which very
closely corresponds to Awkward Array’s List Type and List-Offset Array type. Tensorflow has defined
it’s ​encoding​ for Ragged Tensors which is very similar(For example, Tf’s ​values​ and ​row_splits
correspond to ak’s ​data​ and ​index​ respectively) to ​ak.layout.ListOffsetArray​’s inner data
encoding. This would enable a zero-copy transfer from Awkward Arrays to Tensorflow’s Ragged
Tensor. PyTorch’s Nested Tensor is still under active development, with a prototype which was
planned to be released by the end of October 2020. When it gets merged into the upstream PyTorch
repository, we'll have to look for a similar encoding and some helper functions that would help enable
a zero-copy transfer.

The final goal of this project would be to write a collection of small examples which would help users
to get up to speed with auto-differentiation of Awkward Arrays with JAX.

Timeline

Week 1​:
● Getting familiar with JAX - which includes studying the inner workings of JAX functions as

well as understanding how it integrates with Numpy.

Week 2
● Writing JVPs for element wise operations and researching about reducers.

Week 3​:
● Continuing study about the JVPs for the reducers and writing it up.

Week 4​:
● Using the knowledge from Week 1, to complete the JAX and Awkward Array interfacing.

Week 5​:
● A buffer period for writing tests, and resolving any issues that might crop up.

Week 6​:
● Completing the interfacing of Awkward Arrays with Tensorflow’s Ragged Tensor

Week 7​:
● Reading up on PyTorch itself and PyTorch’s Nested Tensor to understand how to enable

zero-copy transfer from Awkward Arrays to PyTorch.

Week 8:
● Completing the interfacing of Awkward Arrays with PyTorch’s Nested Tensor.

2

https://www.tensorflow.org/guide/ragged_tensor#raggedtensor_encoding

Week 9​:
● A buffer period for writing tests, documentation and resolving any issues that might crop up.

Weeks 10 and 11​:
● Keep working on the notebook example.

Week 12​:
● Period to prepare for the fellowship presentations.

3

