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1 Proposal

In recent years, machine learning (ML) algorithms have shown tremendous promise in improving the sen-
sitivity of results delivered by LHC experiments. For instance, heavy-flavour jet identification algorithms
like DeepCSV [1, 2] have utilized deep neural networks (DNNs) to significantly increase the performance of
heavy-flavour jet identification. The DeepCSV algorithm has proved to be more sensitive and efficient than
other identification techniques, increasing the relative efficiency by as much as 15% in conditions with low
mis-identification probabilities. Other notable applications of ML in high energy physics (HEP) include the
search for for exotic particles with deep learning (DL) [3], b jet energy regression [4], and tagging hadronically
decaying boosted objects with DNNs [5]. These algorithms also prove to be useful in physics measurements;
for example, one of the DNNs described in Ref. [5] was utilized in the CMS search for the Higgs boson
decaying to charm quarks [6].

While these algorithms are applied on data collected by LHC experiments, it is often preferable or even
necessary, in the case of fully supervised algorithms, to train them on simulation. For example, training a
supervised jet energy regression algorithm requires knowledge of the “true” energy of the jet: this is accessible
in simulation, but not in actual data. Developing ML algorithms on simulation can present challenges. If the
input features to the algorithm are not perfectly modeled by simulation, the output distributions may also
be different between data and simulation. In a HEP analysis, these differences would typically be accounted
for through a systematic uncertainty which covers the level of disagreement between data and simulation.

As we move towards the HL-LHC, luminosity increases to unprecedented levels and the statistical un-
certainty of measurements will decrease. With smaller statistical uncertainties, systematic uncertainties will
play a greater role in the sensitivity of a measurement and minimizing them becomes more important to
achieving optimal sensitivity.

The problem of the training sample not being entirely representative of the sample where the algorithm
will be applied, is not unique to HEP. More generally, this is referred to as a domain shift between the source
domain and the target domain. The field of domain adaptation is the study of algorithms which are robust
to the domain shift. Solutions to domain adaptation usually fall into one of two categories: pre-training
solutions or solutions applied during training. The former focuses on transforming features in the source
domain to be more representative of the target domain, while the latter typically adds a component to the
loss function which rewards invariance between the source and target domains. Pre-training solutions may
involve ML, such as Cycle-Consistent Adversarial Networks [7], but in the context of HEP this often takes
the form of deriving corrections for the simulation and is typically done for any HEP analysis, regardless of
whether ML methods are even used.

Solutions applied during training are less common in HEP, but have been successfully applied: a CMS
search for new long-lived particles (LLPs) decaying to jets [8] utilizes a DNN to identify jets originating from
an LLP. A gradient reversal layer [9] is included during training to minimize the DNN’s ability to distinguish
between events from data and events from simulation. The gradient reversal layer discourages the DNN from
learning features which allow it to distinguish between data and simulation, with the hope that doing so will
improve the agreement of the output distributions between data and simulation. Indeed, it was found to
improve the agreement, as shown in Fig. 1, and is associated with only a small decrease in the algorithm’s
performance on the original task, identifying jets originating from LLPs.
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Figure 1: Comparisons of DNN score between data and simulation for the DNN designed to identify jets orig-
inating from an LLP, shown without (left) and with (right) the inclusion of a gradient reversal layer [9] during
training. Inclusion of the gradient reversal layer both improves agreement between data and simulation and
reduces the associated systematic uncertainty. Taken from Ref. [8].

While gradient reversal layers are shown to be successful, it is possible to take a more direct approach
to improving the agreement between data and simulation. Rather than discourage the DNN from learning
features which allow it to distinguish between examples from the source and target domain (as done for
the gradient reversal layer), we propose to explicitly reward the DNN for minimizing differences between
distributions in the source and target domains.

One possible implementation is the addition of a histogram loss component, originally proposed in the
context of dimensionality reduction [10]. For a classification task which is trained on events having label
y which is either 0 or 1 and which gives a prediction for each event ŷ ∈ [0, 1], probability distribution
functions of ŷ for events from the source domain (i.e. simulation), denoted SS and with label z = 0, and
the target domain (i.e. data), denoted ST and with label z = 1, can be estimated through histograms HS

and HT with N bins. The bins are assumed to be uniformly spaced, such that the bin centers are given by
t1 = 0, t2, ..., tN = 1 and the spacing between bins is given by ∆ = 1/(N − 1). The n-th bin of HT can be
constructed as

hTn =
1

|ST |
∑

i:zi=1

δi,n, (1)

where δi,r is a weight defined such that we linearly interpolate for each entry when constructing the his-
tograms:

δi,n =

 (ŷ − tn−1)/∆, if ŷ ∈ [tn−1, tn]
(tn+1 − ŷ)/∆, if ŷ ∈ (tn, tn+1]
0, otherwise.

(2)

In this way, an event with ŷ falling directly between two bins tn and tn+1, i.e. ŷ = (tn+1 − tn)/2 would
contribute a weight of 0.5 to both hn and hn+1, and a weight of 0 to all other bins. Similarly, an event
with ŷ = tn contributes a weight of 1 to hn and a weight of 0 to all other bins. A loss function rewarding
agreement between the probability distributions for ŷ between data and simulation can be constructed as
the sum of the squares of differences between each bin of HS and HT :

LH(z, ŷ) =

N∑
n=1

(hSn − hTn )2. (3)

A composite loss function which rewards performance on the original task as well as agreement between HS

and HT takes the form
L(y, z, ŷ) = LC(y, ŷ) + λLH(z, ŷ), (4)

where LC would be a typical classification loss (e.g. cross-entropy) and λ is a hyperparameter that dictates
the balance between rewarding classification and rewarding data/simulation histogram agreement.
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2 Timeline

The proposed timeline is up to six months, starting in mid-June 2021. From mid-June to August, during
which I have no other academic or research commitments, I will devote 100% of the time to the project. In
the following months, funding can be supplemented from Boston University.

• Month 1: implement on a toy problem with CMS data. Construct a photon ID DNN with a simple set
of features describing isolation and shower shape. The classification component is trained with prompt
and fake photons from γ + jets simulation, while the histogram loss component takes electrons from
data and simulation in a Z → ee control region. Deliverable: Functioning DNN with histogram loss
component

• Month 2: compare to gradient reversal layer. Implement gradient reversal layer and compare perfor-
mance between a DNN with a gradient reversal layer and a DNN with a histogram loss component.
Deliverable: quantification of performance, both in terms of the original task (AUC) and the data/MC
agreement, of DNN with histogram loss vs. DNN with gradient reversal layer

• Months 3-4: Use CERN OpenData to illustrate the idea with public datasets. Deliverable: publication

• Months 4-6: Prepare publication (student will be funded by Boston University).

References

[1] A. M. Sirunyan et al. [CMS], “Identification of heavy-flavour jets with the CMS detector in pp collisions
at 13 TeV,” JINST 13, no.05, P05011 (2018) doi:10.1088/1748-0221/13/05/P05011 [arXiv:1712.07158
[physics.ins-det]].

[2] M. Stoye, “DeepFlavour in CMS,” IML Machine Learning Workshop (2017)
[https://cds.cern.ch/record/2256692].

[3] P. Baldi, P. Sadowski and D. Whiteson, “Searching for Exotic Particles in High-Energy Physics with
Deep Learning,” Nature Commun. 5, 4308 (2014) doi:10.1038/ncomms5308 [arXiv:1402.4735 [hep-ph]].

[4] A. M. Sirunyan et al. [CMS], “A Deep Neural Network for Simultaneous Estimation of b Jet En-
ergy and Resolution,” Comput. Softw. Big Sci. 4, no.1, 10 (2020) doi:10.1007/s41781-020-00041-z
[arXiv:1912.06046 [hep-ex]].

[5] A. M. Sirunyan et al. [CMS], “Identification of heavy, energetic, hadronically decaying particles using
machine-learning techniques,” JINST 15, no.06, P06005 (2020) doi:10.1088/1748-0221/15/06/P06005
[arXiv:2004.08262 [hep-ex]].

[6] A. M. Sirunyan et al. [CMS], “A search for the standard model Higgs boson decaying to charm quarks,”
JHEP 03, 131 (2020) doi:10.1007/JHEP03(2020)131 [arXiv:1912.01662 [hep-ex]].

[7] J. Zhu, T. Park, P. Isola and A. A. Efros, “Unpaired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp.
2242-2251, doi: 10.1109/ICCV.2017.244.

[8] A. M. Sirunyan et al. [CMS], “A deep neural network to search for new long-lived particles decaying
to jets,” Mach. Learn. Sci. Tech. 1, 035012 (2020) doi:10.1088/2632-2153/ab9023 [arXiv:1912.12238
[hep-ex]].

[9] Y. Ganin and V. Lempitsky, “Unsupervised Domain Adaptation by Backpropagation,” Proc. ICML ’15
(Lille, France, 2015), p. 1180, [arXiv:1409.7495 [stat.ML]].

[10] E. Ustinova and V. Lempitsky, “Learning Deep Embeddings with Histogram Loss,” Advances in Neural
Information Processing Systems 29, (2016).

3


