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1 Proposal

In recent years, there has been a revolution in Machine Learning (ML) techniques that can be attributed to the large
increase in computational power, mainly harnessing the efficiency for matrix multiplication and convolution granted
by Graphical Processing Units (GPUs). The most widespread of these techniques was the Artificial Neural Network
(ANN), whose architectural principles were inspired by information processing and distributed communication in
biological systems. Even though ANNs were created to mimic brain-like calculations, facilitating communication
between artificial neurons and performing calculations inside these neurons, neuroscientists were quick to point out that
biological systems perform completely differently from those proposed by any current type of ANN. As such, Artificial
Intelligence (AI) has not reached the truly limitless potential that was once promised. Neuromorphic hardware and
Spiking Neural Networks (SNNs) [1], which behave like the human brain, aim to fix this problem, bridging the gap
between artificial and biological intelligence. The inherent strengths of these SNNs would be extremely useful at the
Large Hadron Collider (LHC) with their need for fast inference and accurate data-processing of petabytes of time-series
events.

SNNs use membrane potentials to mimic the behavior of organic information processing systems like the human brain.
This architecture computes using asynchronous spikes that signal the occurrence of an event by temporally precise
action potentials, as demonstrated in Fig. 1. As such, these individual neurons with action potentials and asynchronous
spikes are difficult to simulate on traditional hardware, which led to the development of neuromorphic computing
hardware like the Loihi research chip1. Neuromorphic hardware contains neurons that are optimized for SNNs and
because of this, the most promising SNN results come from dedicated neuromorphic hardware. This combination
of SNN algorithms and neuromorphic hardware results in favorable properties exhibited in real neural circuits like
brains, such as analog computation, low power consumption, fast inference, event-driven processing, online learning,
and massive parallelism. These properties could be the key to unlocking the intelligence that ANNs promised to give
but failed to deliver on. Importantly, SNNs are inherently temporal architectures with the timing of neuron firings
being directly responsible for the computation of the model. As such, they excel with time-series datasets, achieving
state-of-the-art performance [2] on datasets like Permuted Sequential MNIST (PS-MNIST) [3] where data is fed in as a
function of time. Naturally, the next application for these SNN architectures is at the frontiers of ML experimentation,
at physics experiments like the LHC.

I propose the development and optimization of SNN models using neuromorphic training algorithms in real-physics use
cases, like detection of anomalous events at the LHC, where protons are collided a billion times per second at extreme
energies to create new fundamental particles. We will build on previous research completed by a team from Intel Labs,
CERN, and myself, where we demonstrated the ability to detect gravitational-wave in simple single-detector time-series
data at the Laser Interferometer Gravitational-Wave Observatory (LIGO) using recurrent autoencoders (paper submitted
to Machine Learning: Science and Technology). The continuation of this project at the LHC involves more complex
time-series data from multiple detector channels. As ML algorithms are the cutting edge of data processing at CERN,
the development of this project will extend experimentation on the strengths of SNN models with respect to their
classical ANN counterparts, enabling scientists at CERN to identify use cases for the powerful algorithms in their
detectors. We will compare the SNN anomaly detection algorithms with proven algorithms, such as the Variational
Autoencoder [4].

1https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html

https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html 


Figure 1: Membrane potential of a single spiking neuron. The neuron fires when the action potential achieves a specific
threshold. After activation, the signal returns to the regular low potential.

Figure 2: Illustration of an autoencoder architecture with generic nodes. For the proposed project, the encoder and
decoder will be multi-layered Legendre Memory Units (LMU), a type of spiking recurrent cell. In comparing y and ỹ,
one can infer how much the given input differs from normal QCD noise, which can signal an anomalous detection.

This project will assist in improving real-time and offline anomaly detection algorithms at the LHC. At the LHC, data
are collected at 40 MHz but only 1 kHz of data can be stored for physics studies. This is acceptable since the majority
of collisions in the LHC are known physics which needs no further studies. Scientists search for needle-in-a-haystack
events to study which contain anomalous physics. A typical LHC experiment operates a real-time selection L1 trigger
system, that decides if an event should be stored or discarded. A L1 algorithm needs to operate within O(1 µsec) latency,
which makes it an ideal selection for fast-inference neuromorphic hardware like Loihi. Additionally, offline searches
(where accuracy is preferred) for anomalous events could also benefit from the inherent time-series nature of SNNs.
This project will aim to prove that the LHC could benefit from an unsupervised SNN algorithms designed to identify
outlier events, possibly highlighting the occurrence of new phenomena in LHC collisions. For this purpose, I will
design a spiking recurrent autoencoder, similar to our previous LIGO gravitational-wave identification algorithm, which
processes particle four momenta. Since the autoencoder training does not depend on any specific new physics signature,
the proposed procedure does not make specific assumptions on the nature of new physics. The event selection based
on this SNN algorithm would be complementary to classic LHC searches, delivering a list of previously unidentified
anomalous events that the experimental collaborations could further scrutinize and even release as a catalog.

The SNN autoencoder would be trained to represent normal simulated QCD noise in a compressed latent space and
decompress this encoded data as represented in Fig. 2. Specifically, the encoder and decoder cells will use the Legendre
Memory Unit (LMU) [2], which is a spiking alternative to the Recurrent Neural Networks like Long-short memory
networks (LSTMs) [5] and Gated Recurrent Unit (GRUs) [6]. As a part of the Intel Neuromorphic Research Community
(INRC), I can access large-scale neuromorphic systems that can be used for testing and evaluation. To train the SNN
autoencoder models on GPUs will require special backpropagation algorithms, SLAYER [7], which can overcome
the problem of non-differentiability of the spike functions in the SNN. Additionally, evolutionary optimization (EO)
algorithms for SNNs [8] can be used to further optimize models that are already trained.
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2 Timeline

The timeline I propose is a total of three months, during which I will devote 100% of the time to the project. I will have
no academic, teaching, or other research obligations during this time.

• Month 0-1: Design and implement LMU autoencoder toy model on LIGO GW data. This simple dataset will
help to troubleshoot problems with the SNN autoencoder architecture and SNN training (back-propagation)
before moving to more difficult LHC datasets. Deliverable: Functioning LMU autoencoder architecture.

• Month 1-1.5: Generate simulated dataset corresponding to LHC (specifically CMS) operating conditions with
normal QCD events and beyond-standard-model (BSM) events which will be used to train and evaluate the
LMU autoencoder. Deliverable: Simulated CMS dataset.

• Month 1.5-3: Modify and train LMU autoencoder to run on the simulated CMS dataset. Refine model
using different spiking back-propagation algorithms. Optimize these models using evolutionary optimization
algorithms. Deliverable: Full neuromorphic anomaly detection algorithm for CMS.
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