saransh0701@gmail.com github/Saransh-cpp linkedin/saransh-cpp twitter/saranshchopra? medium/@whiteviolin

IRIS-HEP Fellowship Proposal

Vector: Constructors, documentation, and benchmarks

Mentors: Henry Schreiner and Jim Pivarski
Saransh Chopra

1 Abstract

Vector is a Python library that allows working with 2D, 3D, and Lorentz vectors, to solve common
physics problems in a NumPy-like way. With Vector, users can create vectors in a variety of coordinate
systems, including Cartesian, cylindrical, spherical, and any combination of these with time or proper
time for Lorentz vectors. In all, there are 12 coordinate systems: {x-y vs p - ¢ in the azimuthal plane}
x {z vs 0 vs ) longitudinally} x {t vs 7 temporally}.

Vector comes loaded with 3 + 2 backends; a pure Python object backend, a NumPy backend, an
Awkward Array backend, an Object-Numba, and an Awkward-Numba backend to leverage JIT (Just
In Time) compiled calculations on vectors. Other potential future vanilla backends include Tensorflow
and JAX, and other possible future Numba-backends include Numba-NumPy.

The user-facing API of Vector is a bit confusing as it does not expose its true API, which are the
Python classes. The current API provides wrapper functions (named as obj, arr, and awk functions) to
users which are also shown in the internal classes’ __repr__methods, making these constructor functions
even more ambiguous.

Additionally, the vector library lacks proper user as well as API documentation. Currently, there are
no detailed explanations in the existing tutorials, and most of the functions and classes do not contain
docstrings, which automatically render when displayed on the documentation website. Furthermore,
as discussed with the mentors, benchmarking would be a valuable addition to the Vector project, which
could then be propagated to all Scikit-HEP packages in the future.

2 Project and deliverables

2.1 Constructors

The current user API of Vector needs to be changed to expose the classes and their constructors to the
users. Following this, a user will be able to and will be encouraged to use the class constructors rather
than the overloaded obj, arr, or awk functions.

¢ Exposing all classes and their __init__ methods to the user API.
¢ Adding keyword arguments to all the __init__ methods.
* Making sure all the backends work with the proposed changes.

2.2 Documentation

The current documentation lacks docstrings (API documentation) and tutorials. This project aims to
add most of it from a user’s perspective.
¢ Adding API documentation for the already existing user-facing functionalities.
¢ Adding API documentation for the functionalities added during the fellowship period.
¢ Adding tutorials for users.

2.3 Benchmarks

Vector currently has no benchmarks. This project will aim to create a basic benchmark suite for Vector
which can then be propagated to other scikit-hep packages in the future.
¢ Adding benchmarks using ASV.
¢ Automating the benchmarks using GitHub Actions.
* Deploying an easy-to-access website for the benchmarks.


mailto:saransh0701@gmail.com
https://github.com/Saransh-cpp
https://linkedin.com/saransh-cpp
https://twitter.com/saranshchopra7
http://medium/@whiteviolin

saransh0701@gmail.com github/Saransh-cpp linkedin/saransh-cpp twitter/saranshchopra? medium/@whiteviolin

3 Timeline

Time zone: GMT +5:30 hours (Indian Standard Time)

Fellowship duration: June, July, and August (~ 3 months full time)

University examinations: My university exams will take place from the 9th to the 24th of May;
therefore, I will be starting the fellowship tenure on the 1st of June.

I will be able to devote 40-45 hours every week to the fellowship throughout June, July, and August.
I will be available via all communication channels, including video conferencing, email, and chat. My
university will be starting regular offline classes from the 17th of July for my fifth semester, and due
to this, my work timings will shift to evenings in IST. This shift might make my work timings slightly
less flexible, but I will be available for video conferences throughout the day.

Timeline for June, July and August (12 weeks full time ~ 3 months full time)

* Weeks 1 and 2
— Get familiar with Vector and its backends.
- Add and fix the documentation for the existing API.
— Possibly address issue #136.

e Weeks 3 and 4

- Get PR #89 merged which had 2D constructors only.

— Start working on the Object backend to expose constructors to the user API (3D and
Lorentz).

— Add tests, documentation, tutorials, and wrap up the Object backend.

e Weeks 5 and 6

- Start working on the NumPy backend to expose constructors to the user API.
— Add tests, documentation, tutorials, and wrap up the NumPy backend.

* Weeks 7 and 8
- Start working on the Awkward backend to expose constructors to the user API.
— Add tests, documentation, tutorials, and wrap up the Awkward backend.

* Weeks 9 and 10
— Buffer period: Add missing documentation and if any documentation was unknowingly missed
while implementing the constructors
— Create basic benchmarks and add CI for the same.
— Target for the 1.0 release.

* Weeks 11 and 12
— Add more benchmarks and improve the CI for the same.

- Create a template-like structure for benchmarks which could be then utilized by other Scikit-
HEP projects.

- If time permits, add more tutorials to the documentation.



mailto:saransh0701@gmail.com
https://github.com/Saransh-cpp
https://linkedin.com/saransh-cpp
https://twitter.com/saranshchopra7
http://medium/@whiteviolin
https://github.com/scikit-hep/vector/issues/136
https://github.com/scikit-hep/vector/pull/89

saransh0701@gmail.com github/Saransh-cpp linkedin/saransh-cpp twitter/saranshchopra? medium/@whiteviolin

4 About me

I am Saransh, a sophomore at the University of Delhi, pursuing a major in Information Tech-
nology and Mathematics with a minor in Computational Biology. In daylight, I work towards my aca-
demic skills and professional commitments, and by night, I develop and maintain open-source research
software, which I believe are the key to collaborative and reproducible research. Currently, I am re-
sponsible for the development and maintenance of PyBaMM (150,000+ installs), BattBot (120+ follow-
ers), lilonpack (350+ installs), and my contributions range from DeepXDE (250,000+ installs) to Colour
(1,300,000+ installs).

In the summer of 2021, I worked as a Google Summer of Code student developer under PyBaMM,
NumFOCUS, where I worked on mathematical modeling of batteries using Python. My other research
and development experiences include working under my Mathematics professor Dr. Shoba Bagai (Uni-
versity of Delhi), to solve higher dimensional partial differential equations using Physics-Informed
Neural Networks and working as an intern at AiView to foster the independence of visually impaired
people using Computer Vision. At present, I am more interested in developing the infrastructure of
research software, and I currently maintain the infrastructure of PyBaMM and liionpack. I will also
be leading a workshop at PyCon Italia this summer titled "Code coverage through unit tests running in
sub-processes [threads: Locally and automated on GitHub”.

In the near future, I see myself as a graduate student pursuing academic research in Mathematics
and Computer Science, and I believe the IRIS-HEP fellowship will help me take a step towards it by
giving me a good head-start and an unforgettable research and development experience.


mailto:saransh0701@gmail.com
https://github.com/Saransh-cpp
https://linkedin.com/saransh-cpp
https://twitter.com/saranshchopra7
http://medium/@whiteviolin
https://github.com/pybamm-team/PyBaMM/
https://github.com/pybamm-team/BattBot
https://github.com/pybamm-team/liionpack
https://github.com/lululxvi/deepxde
https://github.com/colour-science/colour

	Abstract
	Project and deliverables
	Constructors
	Documentation
	Benchmarks

	Timeline
	About me

