
Dmytro Horyslavets

Kyiv Academic University

Introduction
The amount of biological sequencing data available in public repositories is growing

exponentially. Even for defined subsets of samples that are collected within large-scale

studies, the entire sequencing data of a study can comprise hundreds of terabytes. Using vast

raw sequencing data makes its analysis complicated and decreases its accessibility to the

broader research community. Thus, for efficient and scalable analysis, a more sophisticated

approach is required. The MetaGraph [1] framework transforms large repositories of

sequencing data into compressed and accessible representations (indexes), which can be

efficiently queried with any sequence of interest. The MetaGraph index consists of the de

Bruijn graph and its annotation metadata, allowing for sequence search and assembly.

Project Proposal
The project goal is to extend the MetaGraph framework by adding an option to extract reads

from the Counting de Bruijn Graphs, which appear during the index construction in the

MetaGraph workflow. That is, given a sequence search result, extract all reads that overlap

the parts of the graph that matched.

That will help to perform more refined graph cleaning during the assembly step and also be

useful for further downstream analysis after the sequence search.

Software deliverables
The MetaGraph is created mostly using the C++ language. Its source code is stored in the

GitHub repository. The new features planned to be included in the framework during this

project will also be implemented using the C++ language.

Timeline
The project work will be arranged for 10 weeks starting from July 5th to September 12th

under the supervision of Andre Kahles (University of Zurich).



Week 1-2
Introduction to the MetaGraph framework source code. Getting familiar with its concepts and

implementation aspects. Literature review on Counting de Bruijn graphs.

Week 3-5
Extending the MetaGraph annotator to mark sequence end-points during index construction.

Implementing an algorithm to extract reads from the assembled de Bruijn graph. Evaluating

the algorithm efficiency.

Week 6-8
Testing the implemented feature of the read extraction. Inserting it in the general MetaGraph

pipeline as an option in the graph cleaning step.

Week 9-10
Final testing and code refactoring. Finalizing the project and creating a summary

presentation.

References
[1] Karasikov, M., Mustafa, H., Danciu, D., Zimmermann, M., Barber, C., Rätsch, G., &

Kahles, A. (2020). Metagraph: Indexing and analysing nucleotide archives at petabase-scale.

BioRxiv.


