
Implement a Snakemake backend for
RECAST workflows

● Fellow: Andrii Povsten
● Project Mentors: Matthew Feickert, Lukas Heinrich

Project Description

Developing optimal cuts within a phase space that is sensitive to the desired model and
evaluating the background of the standard model, along with systematics, can be a
time-consuming task for analysis teams comprising multiple people. Moreover, as time
goes by, new theories may emerge, leading to alternative models that manifest in the
same phase space. In such cases, it would be more efficient for scientists to make
adjustments to the original analysis and re-run it with the new models. However, the
original analysts may have moved on to other projects. To ensure the reusability of
analyses and minimize reliance on the original team, the analysis needs to be archived
in a manner that allows for easy re-execution. This is where RECAST[1] comes into
play.

RECAST is a framework that extends the impact of existing analyses conducted in LHC
experiments. It is part of a broader initiative known as REANA[4], which aims to
enhance the reproducibility of particle physics data analysis. By automating the process
of passing new signal models through an analysis during its development phase,
RECAST enables the analysis to be effortlessly reused in the future for interpreting new
signal models within the same phase space.

Initially, when RECAST was implemented for ATLAS, there was a lack of a suitable
workflow language with robust Linux container support. To address this, a tool called
yadage[3] was employed, which allowed users to define each step of the analysis,
specify the required analysis environment (i.e., container) for each step, and integrate
them into the overall analysis workflow. However, REANA has now begun collaborating
with the Snakemake[4] workflow management system, which has gained popularity in
the wider scientific community and provides mature Linux container support.
Snakemake is a workflow engine defined using a Snakefile, employing a
domain-specific language with a syntax resembling YAML and Python. Workflows in
Snakemake are described in terms of rules, where each rule specifies the inputs,
Python commands to execute, and conditions such as the Docker container to use.



Snakemake creates a Directed Acyclic Graph that represents the data analysis
workflow, resulting in a more readable interface.

A goal for making RECAST a more sustainable project towards the future is to
implement a new backend for RECAST, utilizing the Snakemake workflow management
system. This integration aims to enable the systematic interpretation of LHC searches
by harnessing the features and benefits provided by Snakemake. A first step towards
this goal would be to reimplement the logic of a yadage based RECAST workflow, like
the ATLAS RECAST public examples[5], in Snakemake and verify that these
Snakemake workflows are compatible with the REANA Snakemake workflow engine.
Additional extension of the recast-atlas library’s CLI API to support submission of
Snakemake based workflows to REANA would provide a full example of the benefits,
which would then motivate future development work of the recast-atlas library which
may extend beyond the reach of this Fellow project.

The implementation of the Snakemake backend should prioritize performance
optimization and scalability. This includes exploring strategies for efficient parallelization
of workflow execution, utilization of distributed computing resources, and minimizing
resource usage while maintaining analysis result accuracy. By focusing on these key
objectives, the project aims to enhance the capabilities of RECAST by implementing a
modern and efficient backend utilizing the Snakemake workflow management system.

Deliverables
Deliverable for this project would include:

● A GitHub repository that with example workflows from the ATLAS RECAST examples
GitLab group translated into a Snakemake.

● Examples in the GitHub repository of these SnakeMake workflows being run with the
REANA Snakemake workflow engine.

● An outline of how this work could be used to extend the recast-atlas CLI API for
submission of Snakemake workflows to REANA.

● Documentation associated with the development process.
● Presentations on the associated work.

Timeline

● Weeks 1-2: Familiarize myself with the Snakemake workflow management system
and acquire CERN account credentials for running RECAST and REANA

https://gitlab.cern.ch/recast-atlas/examples
https://gitlab.cern.ch/recast-atlas/examples


workflows. Understand the design of yadage and run the example RECAST
ATLAS workflows of https://gitlab.cern.ch/recast-atlas/examples.

● Weeks 3-4: Create workflows in Snakemake that provide the same functionality
as the workflows of the examples.

● Weeks 5-7: Submit Snakemake workflows to the REANA Snakemake workflow
engine and validate the results against yadage workflows. Create and execute
new test cases that highlight any differences in strengths between yadage and
Snakemake. As a stretch goal, make a pull request to the recast-atlas project to
extend the CLI API for submission of workflows to REANA using the Snakemake
workflow engine.

● Weeks 8-10: Provide user support materials (guidelines, examples, tutorials).
● Weeks 11-12: Summarize results as a short report.

References:
[1] RECAST: https://iris-hep.org/projects/recast.html
[2] REANA: https://www.reana.io
[3] Yadage: https://github.com/yadage/yadage
[4] Snakemake: https://snakemake.readthedocs.io/en/stable/
[5] RECAST ATLAS public examples: https://gitlab.cern.ch/recast-atlas/examples

https://gitlab.cern.ch/recast-atlas/examples
https://iris-hep.org/projects/recast.html
https://www.reana.io
https://github.com/yadage/yadage
https://snakemake.readthedocs.io/en/stable/
https://gitlab.cern.ch/recast-atlas/examples

