
Improving latency and scalability of the 
user runtime job log collecting and 

exposure in the REANA reproducible 
analysis platform

IRIS-HEP project proposal
Jelizaveta Lemeševa

REANA is “a reproducible analysis system allowing scientists to run containerized data analysis 
pipelines on remote computer clouds”1. It allows researchers to express their computational 
analyses using declarative workflow languages (CWL, Snakemake, Yadage) that are then 
executed on a target compute backend. The researchers can easily execute and rerun the 
analysis with different input data, parameters or code.

Scientists interact with REANA via a command-line client or via the web interface. The client 
allows to send requests to connected REANA cluster for their execution. The REANA cluster 
consists of several micro-services that accept client requests and schedule analysis workflows 
and jobs for the execution on the supported compute backends (Kubernetes, HTCondor, Slurm). 
The REANA cluster schedules user workflows and jobs for execution by sending requests to 
compute backend’s API. The compute backend executes the job and notifies the REANA cluster 
about its completion. The REANA cluster then retrieves the logs of the jobs from the compute 
backend and stores them in a PostgreSQL database for persistency. The client retrieves these 
logs from the REANA cluster and displays them to the user.

In the current setup, users can access workflow and job logs only after the job execution has 
finished. When a workflow consists of many jobs, the researcher can therefore consult logs of 
already finished steps, but not of the step that is currently being executed.

The goal of this IRIS-HEP project proposal is to enhance the REANA job logging system with a 
possibility to capture logs of executing processes “live”, so that the user would have access to 
the running job logs even during job execution. Certain jobs can run for several hours so it 
would often be beneficial to peek into the execution process without much latency delays.

The technological solution to this problem could consist of introducing a sidecar container that 
would be deployed alongside the main job, reading the logs in real time and pushing them to the 
database. An alternative approach could be to deploy daemonsets that would listen to all user 
workload on a given cluster node and dispatch the results to a new log collector service, living 
outside of the database, for example in an OpenSearch. This may make the log collection more 

1 https://docs.reana.io/



scalable at the price of introducing a new infrastructure component and making necessary 
changes to the REANA application to expose thusly collected logs back to the clients in the 
traditional way. Further evaluation is needed to decide which approach to take.

In either case, it is desired that the logs are exposed to the user over the command-line client 
and the web interface with very low latency.

Objectives:

- Design a solution to efficiently capture live workflow logs and job logs whilst they are 
being executed.

- Analyse the pros and cons of the various technical approaches to capturing Kubernetes 
pod logs with low latency.

- Implement the chosen solution by amending the necessary REANA micro-service 
components.

- Update REANA client and web interface to display live log streams to the user.
- Run benchmarks to assess the performance of the developed solution.

The project will use an agile and iterative development model with the following tentative time 
plan:

Task Weeks

Introduction to REANA infrastructure 1

Rapid prototyping of technical approaches to 
capturing main job logs from the Kubernetes 
pods

2

Design of the selected live logging system 3-4

Backend implementation 5-8

Client implementation 9-10

Performance benchmarks 11-12


