
Proposal
Artem Havryliuk

Mentors: Jim Pivarski, Philip James Ilten
“Array-Oriented Python Interface for the Pythia Event Generator”

Overview

Pythia is a cornerstone C++ package used in particle physics for simulating high-energy
collisions. Although Pythia's current Python interface is excellent for prototyping due to its
comprehensive feature set, including bi-directional bindings, it becomes inefficient when
analyzing large datasets because of its one-event-at-a-time approach. This project aims to
develop an array-oriented Python interface for Pythia, leveraging the Awkward Array library to
enhance performance and usability, particularly in interactive environments like Jupyter
notebooks. By focusing on a streamlined feature set optimized for speed, this new interface will
facilitate more efficient data handling, enabling the usage of Pythia through the Python interface
for large-scale production-level simulation.

Background

Existing Interfaces and Challenges

Pythia's current Python interface, implemented using pybind11, allows for interaction with its
C++ core. However, the performance is hampered by Python’s inherent inefficiency in
processing large datasets through iterative loops. The necessity to handle complex, nested data
structures—such as groups of particles with attributes like positions and momenta—further
complicates this process.

Comparative Case: FastJet

A similar challenge was addressed in a previous project involving FastJet, another critical C++
package for jet clustering in particle physics. By adding an array-oriented Python interface, the
project significantly improved data handling efficiency. FastJet’s success provides a valuable
blueprint for enhancing Pythia.

Steps

● Ease of Installation: Establish a streamlined installation process to ensure the new
interface is easy to install and use. Implement a continuous deployment (CD) pipeline



that allows users to install the interface with a simple pip install pythia. This setup will
facilitate quick feedback from users, as they can test new features by installing
pre-releases from PyPI.

● Utilize Awkward Array and LayoutBuilder: Leverage the Awkward Array library and its
LayoutBuilder to manage the complex, nested data structures inherent to Pythia’s outputs.
This will enable efficient data transfer between C++ and Python, forming the foundation
for the array-oriented interface.

● Develop an Array-Oriented Interface: Create a Python interface for Pythia that processes
data in arrays rather than single events. This approach will drastically improve
performance by maintaining data in a numerical format suitable for bare-metal
processing, thus avoiding the inefficiencies of Python for loops.

Timeline

Duration Task

2 weeks ● Review Awkward Array Documentation: Gain a comprehensive
understanding of Awkward Array and LayoutBuilder to effectively use
these tools

1 week ● Study Pythia’s C++ API: Understand the current implementation and
identify the key areas where data handling can be optimized.

2 weeks ● Set Up Continuous Deployment (CD) Pipeline: Establish an automated
CD pipeline to streamline the installation process. This will allow for
routine releases, enabling users to test new features promptly via
pip-installing pre-releases from PyPI.

● Design the Interface: Outline the architecture of the new interface,
ensuring it can handle arrays of events and particles efficiently.

1 week ● Implement Data Structures: Use Awkward Array to represent Pythia’s
complex, nested data structures in a way that is compatible with Python.

2 weeks ● Develop the Interface: Implement the array-oriented interface using
pybind11 to connect Pythia’s C++ core with Python.

2 weeks ● Unit Testing: Conduct thorough testing to ensure the interface handles
data correctly and efficiently.

● Performance Benchmarking: Compare the performance of the new
interface with the existing one-event-at-a-time interface to quantify
improvements.

● Optimization: Identify and implement optimizations to further enhance
performance.



2 weeks ● Documentation: Create comprehensive documentation to assist users in
installing and using the new interface.

● Package Distribution: Make the interface available as a pip-installable
package.


