
Project Proposal
"Embedded software application for a RISC-V

based system-on-chip (SoC) for LHCb Velo detector"
Tarasenko Viktoriia

May 8, 2024

1. Project Summary

1. 1 Problem statement
The increase in complexity and size of modern ASIC designs in the HEP
community raises the need for a shift toward an abstract design methodology
that takes advantage of modularity and programmability to achieve a faster
turnaround time both for design and verification. Integrating System-on-Chip
(SoC) design techniques can help provide a structured approach to manage and
optimise the integration of multiple functions onto a single chip, and allow
programmability in the on-detector ASICs.
Possible applications within the HEP community could range from simple

control and monitoring tasks, like calibration and configuration, to performing
on-chip complex data processing.

A platform to automatize the generation of the SoC hardware description and
software stack is currently under development. This will strongly facilitate the
design of complex on-detector front-end electronics.

As part of this effort, to expand programmability options of the specified
platform, it's necessary to develop a technological concept of how high-level
C++ coding can be used for such interactions, as well as the development of
code for simulating and testing the generated SoC hardware.
To optimize the hardware architecture to the target application (as the readout
ASICs of the LHCb Velo detector), is necessary to study and simulate the SoC
already executing the expected functionalities This may introduce a shift toward
abstract design methodology for faster turnaround time of effective system
implementation.



1.2 Solution
It's supposed to develop a conceptual prototype for integration of firmware
applications written in high-level C++ with a simulated microcontroller based
on RISC-V architecture. This will help identify problems at the design stage and
ultimately make improvements. Furthermore, it's crucial to understand the
software and effectively use the libraries provided for future application
development.

1.3 Goals
• Understand how to run a software developed in C++ code on the simulated
hardware of a custom RISC-V processor.
• Design a general concept of software interoperability between different
abstractions applied in the project.
• Create application prototype to demonstrate scoped functionality of the project
for further evaluation.
• Develop different C++ short routines for testing the peripherals and
functionalities of the SoC, and execute them on the simulated hardware
• Develop a C++ code for a specific application of the SoC (calibration routine
of the PicoPix chip, a prototype readout ASIC for LHCb Velo Detector.).



2 Project plan
Weeks 1 - 3

• Assess details about the SocMake platform, RISC-V instructions set and
general project objectives.
• Learn and understand the hardware architecture used in the project.
• Understand how to run a software developed in high-level C++ code on the
simulated hardware.
• Setup and configure the development environment for C++ coding with the
help of the team colleagues.

Weeks 4 - 6
• Design a concept of general software implementation applied in the project.
• Integrate the environment with low-level project peripherals through the HAL.

Weeks 7 - 9
• Fine-tune general system operation ability targeting scoped scenarios.
• Develop a prototype of conceptual project functionality and testing routines
for the SoC peripherals.

Weeks 10 - 12
• Write a software routine for the specific application of the SoC (calibration of
the PicoPix chip, a prototype readout ASIC for LHCb Velo Detector).
• Create a demonstration of the project prototype with test data.


