
Project Proposal: CI/CD improvements for Alpaka
library, and related projects

Modern High-Energy Physics experiments are presented with significant computational
challenges, both in terms of data volume and processing power. As HPC centers attempt to
increase their computational power, the energy consumption limits of this architecture have
necessitated the introduction of GPU-based accelerators to provide the majority of the
computing. Programming techniques for GPUs and other massively parallel accelerators are
very different from those of traditional CPUs, requiring a significant understanding of the
hardware architecture to achieve good performance. HEP experiments have developed millions
of lines of code, and in order to use these new computational accelerator facilities, they would
need to rewrite large amounts of their codebases.

In order to be able to run on all the different hardware architectures, from various vendors, this
task would have to be repeated multiple times in each architecture’s preferred language. That's
the reason why the alpaka1 library was developed in the first place. It is platform-independent
and supports concurrent and cooperative runs on multiple devices, such as the host's CPU with
different instruction sets like x86, ARM, or RISC-V as well as attached accelerators, for
instance, CUDA , AMD, or Intel GPUs. It allows the programmer to write a function once and
execute it on different accelerators.

This project aims to optimize the test coverage and runtime of alpaka. Testing alpaka with all
possible software dependencies would result in about 2,500,000 different combinations of test
jobs. If each job would take 4 minutes on average, testing a single commit on GitHub would take
months. To reduce the number of jobs and also save time for manually adding new software
dependency combinations, we implemented an open source CI job generator2. The generator
reduces the number of jobs to about 170, but has several problems and limitations. The biggest
problem is to check whether all expected test pairs are generated. Therefore, as a result of the
project, we want to finalize the work on the new open source version of the generator, migrate
Alpaka to the new generator3, and verify that the CI works as expected.

1 https://github.com/alpaka-group/alpaka
2 https://github.com/alpaka-group/alpaka/blob/develop/script/job_generator/job_generator.py
3 https://github.com/alpaka-group/bashi

Deliverables
● Design Document in form of a Github issue in bashi generator repository
● Updated list of filter rules up to the reference implementation
● Testing system for 100% filter rule coverage
● User documentation describing the new features
● Deployment on PyPI and integrating into alpaka Github repository
● Performance analysis assessing acceptable increase in CI runtime
● Report detailing the implementation details, test results, and further improvement ideas

Timeline

Month 1: Learning

● Understand alpaka software development workflow with CI/CD on Github and Gitlab
● Set up Python development environment for bashi CI development
● Set up an example Github C++ project for CI testing
● Write the design document describing plans for implementing missing features

Month 2: Implement missing features in bashi

● Implement the filter rules list
● Implement tests for the filter rules list
● Write user documentation as the implementation progresses
● Deploy on pypi

Month 3: Alpaka integration, performance analysis and optimization

● Integrate into alpaka CI
● Test the performance of the generator and the CI runners
● Write a report detailing the development process, code changes, improvements, and

performance analysis results

