
Volodymyr Kovalenko

Modernizing Unified: Resubmissions & Assignment of workflows.

1. Project Summary

1.1 Problem Statement
The Production and Reprocessing (P&R) team is responsible for central production tools that
deliver simulation and data samples to analysis groups working for the Compact Muon Solenoid
(CMS) experiment at the Large Hadron Collider (LHC). These samples are produced by millions
of workflows that run every day on the Worldwide LHC Computing Grid, which consists of 1.5
million cores and 1.5 exabytes of storage. A key task for the P&R team is addressing the
workflow failures across this grid, fixing them, and resubmitting the workflows out into the grid so
that they can deliver the physics back to the researchers. Currently, the codebase that manages
this important task, Unified, has grown out-of-date and complex, which complicates
maintenance, makes it prone to bugs, and lacks flexibility for upgrades and integration with new
features and technologies. This requires a lot of manual work and expert knowledge to update
the system and has trouble with quick and effective troubleshooting, making it hard and slow to
manage failures. Modernizing our tools will make them more reliable, maintainable , and
effective, which will help thousands of workflows run more efficiently everyday across the LHC
Computing Grid.

1.2 Solution
Our solution involves modernizing the key Unified modules crucial for managing workflow
failures and resubmissions. We plan to overhaul the outdated codebase with a new, scalable
architecture optimized for the Worldwide LHC Computing Grid. This will involve creating new
classes to replace old modules like AutoACDC, Assignor, and Actor, ensuring seamless
integration with modern technologies and leveraging already modernized utilities in our
codebase. By adopting a Continuous Integration/Continuous Deployment (CI/CD) approach, we
will enhance the software development process, facilitating more frequent and reliable updates.
The modernization aims to boost reliability and streamline workflow management, making the
system easier to upgrade and maintain. We will deploy these modules via Docker to ensure
scalability and robustness across different environments. Additionally, robust unit testing and
detailed documentation will enhance system functionality and maintainability, reducing the
manual effort needed to handle workflow failures and ensuring more stable, efficient data
delivery to CMS analysis groups.

1.3 Goals
Our goal this summer will be to transition the remaining Unified modules to the modern Unified
branch. The modules that are left to be modernized are:

- AutoACDC
- Actor [only the functions singleRecovery, singleClone, the rest is WTC-related and can

be deprecated]
- Assignor



Volodymyr Kovalenko

- (if time allows) add to OpenSearch the outcome of ACDCs, begin putting together
monitoring for ACDCs

Work has already begun on assignor. Many of these modules rely on utility scripts that have not
all yet been modernized, though some have related dependencies, e.g. AutoACDC and
assignor. As has happened with other modules that have been modernized already, it is
sometimes preferable to refactor the responsibilities of each module, and perhaps even split
them up across several new modules. This will be evaluated as we explore and detail the
functionalities of each script.

2. Project Timeline

Week 1-2 ● Set up the development environment.
● Familiarise with existing code

documentation for AutoACDC, Actor, and
Assignor.

● Outline merging strategy for
modernization.

Week 3-4 ● Develop new class for AutoACDC.
● Re-implement Actor functions:

singleRecovery and singleClone.
● Begin preliminary merging activities.

Week 5-6 ● Develop and test new Assignor module.
● Continue development and testing for

AutoACDC.
● Execute branch merging as components

are finalized.

Week 7-8 ● Integrate and test new modules with
existing utilities.

● Comprehensive branch merging.

Week 9-10 ● Finalize development and system tests.
● Prepare all modules for deployment.

Week 11 ● Deploy new modules via Docker.
● Complete documentation and final branch

merging.


