
DevOps in cloud hosted database for HL-LHC FBCM detector
development

Applicant: Kulakov Danylo (kulakov_d1@knu.ua).
Mentors:

Olena Karacheban (olena.karacheban@cern.ch);
Arkady Lokhovitskiy (Arkady.Lokhovitskiy@cern.ch);
Mihailo Obradovic (mihailo.obradovic@cern.ch).

Abstract: For High-Lumi LHC in the CMS experiment the standalone
luminometer FBCM is being designed. It is a silicon pad-based detector with
dedicated fast ASIC. Various parts of the detector are at the final design stage
and will be produced in 2025. To keeping track of the produced components,
test results, and overall progress of the detector construction the database is
under development. It is a Django framework with an accompanying Python
frontend. The student will contribute to the design and optimization of the
database, and will take part in the ongoing development and subsequent
deployment of this application. They will gain knowledge and experience in
Python scripting, databases, and containerized deployment (OKD).

Project description and deliverables. The Fast Beam Conditions
Monitor (FBCM) is the luminometer, which is being designed for HL-LHC.
It is built from two rings around the beam pipe: one on the +Z and the
other one on the −Z end. Detector is modular and is based on silicon
sensors. Each segment consists of 3 front-end (FE) modules, 1 service board
for powering (with DC-DC 12 V → 1.25 V converter) and one portcard for
electrical to optical signal conversion. Each front-end module is composed
of 1 or 2 ASICs and 6 silicon pads.

At the prototyping stage of the detector there are multiple versions of the
test boards – pre-production versions of the FE modules.

The BRIL group [1] performs different tests to collect and compare data
from different versions of test boards. Some of them are equipped with 1,
some of them with 2 ASICs. ASICs characteristics are individual and must
be saved per channel in an organized manner. This is the primary motivation
for the database. In addition, silicon sensors must be characterized in the
range of voltage before installation of the test board.

The sensor tests can vary, ranging from IV and CV measurements to
studies on the impact of radiation. These tests can require significant time,
and the resulting data can come in various formats. Storing these data
locally can be risky, as the failure of a local machine could lead to the loss
of collected data.

1

kulakov_d1@knu.ua
olena.karacheban@cern.ch
Arkady.Lokhovitskiy@cern.ch
mihailo.obradovic@cern.ch


This is the other motivation for the secured database with a simple and
reliable user interface.

The Django framework was chosen for this purpose, as it is one of the
most powerful Python-based tools and is already widely used in CERN IT
services. For hosting database and web application, Kubernetes [2] was
selected. Kubernetes is a way of automating application deployment and
management, ensuring high availability and reliability.

Work plan:

• Week 1. Onboarding: reading literature and papers regarding the
CMS inner structure and the signal processing pipeline. Setting up a
CERN computer account, gaining access to the data, and running code
to open and plot the available data.

• Week 2−5. Starting work on the current GitHub project: downloading
and developing locally a visualization for data upload for ASIC zip files,
which do not need data plotting. Next to be added is the “2-pad” sensors
data. Searching for an appropriate design. Uploading data samples
that our group needs to store for future analysis, adding plotting where
required. Implementation of a high-availability PostgreSQL database
to collect and store the data. “6-pad” sensor data will be similar, but
with 6 files instead of 2 per sensor.

• Week 6− 8. Test the frontend in isolation, decoupled from the back-
end database. Connecting all parts of the project: using Kubernetes
cluster to host the frontend, exploring different deployment configu-
rations; testing deployed frontend with high-availability database con-
nected. Testing the system in online mode with different data formats
and sizes, and working on optimization. Test deployed database with
several users and manage access privileges.

• Week 8 − 12. Developing tools for fast data interpretation, such as
automatic plot generation and calculation of average values for selected
boards. Adding new pages for other board types with different data
formats to be saved in the online database.

References:

1. CERN CMS Collaboration, “BRIL Group”,
Available at: https://cms.cern/tags/bril.

2. Kubernetes Documentation, Available at: https://kubernetes.io.

2

https://cms.cern/tags/bril
https://kubernetes.io

