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1. Motivation & Objectives 
Modern ATLAS correction procedures rely on histogram lookups and conditional logic, which are 
computationally intensive and non-differentiable. This limits their integration into end-to-end, 
gradient-based analysis pipelines. 

Primary Goal: Build a neural network model that replicates the full ATLAS object corrections 
and systematic errors. The network will be both differentiable and computationally fast, 
enabling seamless inclusion of correction steps directly within higher-level analyses. 

Secondary Objectives: 

1.​ Provide a proof-of-concept on small-R jets using the JZ2 dataset. 
2.​ Compare model performance against official corrections, targeting sub-percent 

residuals. 

 

2. Methodology & Timeline 
1.​ Existing Baseline (Week 0) 

○​ I already have a fully connected 4-layer, 128-neuron per layer network (ReLU 
activations, normalized inputs ), trained for 20 epochs on {𝑝

𝑇
, 𝑙𝑛 𝑝

𝑇
, η, ϕ, 𝑁

𝑗𝑒𝑡𝑠
 }

155 k small-R jets. 
○​ Baseline performance: 

■​  σ(∆ 𝑝
𝑇
/𝑝

𝑇
) ≈  10. 18%

■​  σ(∆ η) ≈ 0. 1
■​  σ(∆ϕ ) ≈ 0. 1

○​ Target: reduce  residuals to ~1% and similarly improve angular resolutions. 𝑝
𝑇

2.​ Literature Review & Input Design (Weeks 1–2) 
○​ Survey model correction methods (e.g., Neos, arXiv:2311.08885) achieving 

sub-percent residuals for large-R jets. 



○​ Refine network inputs (initial five features are provisional; may add per-object 
uncertainties, shower-shape variables, or pileup metrics) and loss functions 
(e.g., weighted MSE, heteroscedastic losses). 

3.​ Enhanced model Training (Weeks 3–6) 
○​ Data preparation: Normalization of all inputs, look into centering of  and . η ϕ
○​ Architecture exploration: Test deeper or residual-connected networks, 

alternative architectures, batch-norm/dropout, and uncertainty-conditioned inputs. 
○​ Training regimen: extend epochs beyond 20, employ learning-rate schedules, 

early stopping, and hyperparameter scans to drive residuals toward 1%.  
4.​ Validation & Error Characterization (Weeks 7–8) 

○​ Generate new percent-error and absolute error histograms; compute updated 
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○​ Benchmark against both the baseline model and official ATLAS corrections on an 
independent test set. 

5.​ Uncertainty-Aware Prototype (Weeks 9–10) 
○​ Design schema for per-object uncertainty inputs ( , , etc.). σ(𝑝

𝑇
) σ(η)

○​ If real uncertainties are unavailable initially, simulate toy distributions to 
demonstrate network gains in high-uncertainty regions. 

6.​ Physics Case Study:  Peak (Weeks 11–12) 𝑍 → 𝑗𝑒𝑡 𝑗𝑒𝑡
○​ Use the model to reconstruct the dijet mass peak; optimize selection cuts to 

minimize peak width. 
○​ Quantify improvements over baseline and illustrate the impact of uncertainty 

inputs. 
7.​ Reporting & Next-Phase Outline (Week 13) 

○​ Summarize performance gains, residual distributions, and challenges. 
○​ Propose extension to electron/photon corrections and integration into full analysis 

frameworks. 
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