{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# The Tau Collections\n", "\n", "```{warning}\n", "The examples on this page have not been updated to use r22 and ServiceX 3 yet. \n", "```\n", "\n", "Taus are complex jet-like objects that are reconstructed and calibrated with their own algorithms. They are a lot like jets, from a data model point-of-view." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from config import deliver_files\n", "from config import sx_f\n", "from func_adl_servicex_xaodr22 import FuncADLQueryPHYSLITE, cpp_float, cpp_vfloat\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import uproot\n", "import awkward as ak" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default we fetch tau-jets from the `Tight` working point (you can change the working point by passing the `working_point` argument)." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7f6a9dd29fd0407f84a0ab9a673d5477", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[01/22/25 16:20:20] ERROR Transform \"sx_f\" completed with failures: 1/1 files failed. Will not query_core.py:210\n", " cache. \n", "\n" ], "text/plain": [ "\u001b[2;36m[01/22/25 16:20:20]\u001b[0m\u001b[2;36m \u001b[0m\u001b[1;31mERROR \u001b[0m Transform \u001b[32m\"sx_f\"\u001b[0m completed with failures: \u001b[1;36m1\u001b[0m/\u001b[1;36m1\u001b[0m files failed. Will not \u001b]8;id=990616;file:///home/rjanusia/.local/lib/python3.9/site-packages/servicex/query_core.py\u001b\\\u001b[2mquery_core.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825782;file:///home/rjanusia/.local/lib/python3.9/site-packages/servicex/query_core.py#210\u001b\\\u001b[2m210\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m cache. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
ERROR Transform Request id: 4790e2c7-b444-4137-9241-ae9d5aca3a3c query_core.py:215\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[1;31mERROR \u001b[0m Transform Request id: \u001b[93m4790e2c7-b444-4137-9241-ae9d5aca3a3c\u001b[0m \u001b]8;id=587212;file:///home/rjanusia/.local/lib/python3.9/site-packages/servicex/query_core.py\u001b\\\u001b[2mquery_core.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=969609;file:///home/rjanusia/.local/lib/python3.9/site-packages/servicex/query_core.py#215\u001b\\\u001b[2m215\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
ERROR More information of 'sx_f' HERE query_core.py:224\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0m\u001b[1;31mERROR \u001b[0m More information of \u001b[32m'sx_f'\u001b[0m \u001b]8;id=738837;https://atlas-kibana.mwt2.org:5601/s/servicex/app/dashboards?auth_provider_hint=anonymous1#/view/6d069520-f34e-11ed-a6d8-9f6a16cd6d78?embed=true&_g=(time:(from:now-30d%2Fd,to:now))&_a=(filters:!((query:(match_phrase:(requestId:'4790e2c7-b444-4137-9241-ae9d5aca3a3c'))),(query:(match_phrase:(level:'error')))))&show-time-filter=true\u001b\\\u001b[1;31;47mHERE\u001b[0m\u001b]8;;\u001b\\ \u001b]8;id=817738;file:///home/rjanusia/.local/lib/python3.9/site-packages/servicex/query_core.py\u001b\\\u001b[2mquery_core.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=396956;file:///home/rjanusia/.local/lib/python3.9/site-packages/servicex/query_core.py#224\u001b\\\u001b[2m224\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "query = FuncADLQueryPHYSLITE()\n", "jets_per_event = query.Select(lambda e: e.TauJets())\n", "jet_info_per_event = jets_per_event.Select(\n", " lambda jets: {\n", " 'pt': jets.Select(lambda j: j.pt() / 1000),\n", " }\n", ")\n", "\n", "files = deliver_files(jet_info_per_event,sx_f)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8ba59afe5b0648218f562f33e41f18f8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "rucio://mc16_13TeV:m...: 0%| | 0/9000000000.0 [00:00]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a155ac238cd94fc39594c500c30c4622", "version_major": 2, "version_minor": 0 }, "text/plain": [ " rucio://mc16_13TeV:m... Downloaded: 0%| | 0/9000000000.0 [00:00]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3bf2106e26fe498d80a76447f67690d4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "rucio://mc16_13TeV:m...: 0%| | 0/9000000000.0 [00:00]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c577f2edd477468390d6f847cc32599e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " rucio://mc16_13TeV:m... Downloaded: 0%| | 0/9000000000.0 [00:00]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "taus = (ds\n", " .Select(lambda e: e.TauJets())\n", " .Select(lambda ts: {\n", " 'pt': [t.pt()/1000.0 for t in ts],\n", " 'eta': [t.eta() for t in ts],\n", " 'phi': [t.phi() for t in ts],\n", " })\n", " .AsAwkwardArray()\n", " .value())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEcCAYAAAAGD4lRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgp0lEQVR4nO3de5hcVZ3u8e9LAiQgEgIRyQUSJaIBFLGFOHg0gkK4SJBBDTKSQZwcz6CgowMBLxlBjvA4gsQLmgNo8IEEDAyJgGLkonM8EgiXQZLAJOZiEkNoTUAgQAj8zh97Vdhpqqqrd3dVd3W9n+epp/de+7Z27er61brstRURmJmZFbFDb2fAzMyal4OImZkV5iBiZmaFOYiYmVlhDiJmZlaYg4iZmRXmIGJmZoU5iJiZWWEOItZnSfqJpG+k6cWSJvTQfrfbl6RVkj7YE/sut/8e3O8Bkh6W9Iyks3t6/2ZFOIj0Y5Kezb1ekfR8bv603s5fV0TEgRFxT2fr1RIQat1XLcodryf338G5wN0RsVtEzOjuziR9tcNn5FlJL0gKSZN7IL9Nq6d/WPRnDiL9WES8rvQC/gR8OJd2XW/nr9EkDeztPHTTfsDirm5U6bwj4qIOn5E3Ag8DtwE3dSej1jocRFqYpGmS/piqR5ZI+khuWUjaPze/rWqpwr5Ok/R7STdIWi9pjaRju5ifd0p6MOXnBmBQbtm2X4aSzpO0Lq33uKSjUvpPgX2Bn6df1eem7c6T9AjwnKSBFX5lvju9B5sk/VjSoM7eh3LHK5PXt0m6R9JTqZrrxA7n9CVJj0h6Or13gyhD0l3AB4DvpWO9pYZ9b3fenbz3g4FbgeeAUyLipWrr57ZThfSlKZ9b0qtU0nlbtWVl9jNc0k2S2iWtzFfjpfOb22H9KyTNqGHbiu99hc9R2c+cARHhVwu8gFXABzukfRQYTvZj4uNkXyD7pGUB7J9b9yfAN6rs/xLgeeDktL8vAau7kL+dgNXAF4AdgVOAl0rHLOUfOABYAwxP6aOBN1c6zzT/MDAKGFxlnUfTOkOB3+WOW/V9qPC+lvK6I7AcuCCd35HAM8ABufXuS9dgKLAU+EyV9+ge4NNpupZ9b3fenbz3vwD+H7BrF67Z/wB+WW3/wNXAl7u6LC3fAXgA+FrK45uAFcAxafl+wGZgtzQ/AFgPjK9h26rvff660slnrtVfLom0sIj4WUT8OSJeiYgbgGXAYQV3dzBweUTcHBGvANcC+0r6XPq1vErSo2n6X8psP57si/E7EfFSRMwF7i+z3svAzsA4STtGxKqI+GMneZsREWsi4vkq63wvrbMRuBg4tbMTrsF44HXAJRGxJSLuIvu1n9/3jHQNNgI/Bw7p4X1XPe9UQpkD7A0cGxHP1Xh8yILtBmBeKsmU83ayAN3VZQDvBoZFxIXpHFcA/weYDBARq4EHgVIJ+khgc0Tc29m2Sa3vfZHPXMtwEGlhkk5X1tvnKUlPAQcBexXc3cFAvmrhDcCzEfHdiJgA/Bo4MyImRMRlZbYfDqyL9FMvWd1xpYhYDnwe+DfgSUlzJA3vJG9rash/fp3VKT/dNRxYk4Jqft8jcvNP5KY3kwWGntp31fOWtANZyeoA4OiIeLrCehNTtd52L7Iv19OBDwGfqbD/cZQJFNWW5ewHDC99PtNn9AKygFdyPa8Gzk+k+Vq3rem9L/iZaxkOIi1K0n5kv8w+C+wZEUPI/qFLddybgV1ym7yxyr6GkFWbtOeSTyGrIikZByypkqX1wIgOdez7llsxIq6PiPeSfVEEcGl+cblNqhy3ZFSH4/45TXf2PlTb95+BUekLM7/vdTXkpzO17Luz8/4hcDhZtc1fKq0UEb+MCHV8kVUfXQssSPvqaF+y75gVXVxWsgZYGRFDcq/dIuK43Do/AyZIGklWIrm+C9tWs91718lnrqU5iLSuXcn+GdoBJJ1BVhIpeRj4hKQBkiYC76+yr4PJfpV+QlnD9fHAP5P9civZLSKeqbKP3wNbgbMl7SjpZMpUrSm7V+JISTsDL5C1w+R/jW8gq//uqrMkjZQ0FPgycENKf5jq70O14y0kC0LnpnOaAHyYrPqou7q1b0mXARPJAsj6gnk4guyX/aQKVWavJ2tn26mLy0ruA55JjdqD0zU4SNK7SytERDtZW9GPyYLG0lq37cS261rDZ66lOYi0qIhYAnyb7Mt7A1kg+F1ulXPIvpSeAk4Dbqmyu4OB64D3AJuArwMnpWMgaRSdVK1ExBayRvl/BDaSNfTfXGbVncka8f9CVh3xBuD83PJvAl9JVRhfqnbMDq4HfkX2y/iPQKknWmfvQ8XjpXP6MHBsyu8PgNMj4rEu5Kus7uxb0kFkHRjeCCzW9veJbOhQuqmWh/8ka0ep1OayFPgvYJOkt3ZhWWn/LwMnkLVVrCQ7z6uA3Tusej1ZR4brC2xbybbrSvZZrPaZa2navgrarOskXQn8d0RcXmH5ROCoiPjXxubMzOrNJRHrCQeT/bKs5ECqt4eYWZNyScS6LRX5D4mIVb2cFTNrMAcRMzMrzNVZZmZWWLMPSNdle+21V4wePbq3s2Fm1lQeeOCBv0TEsI7pLRdERo8ezaJFi3o7G2ZmTUXSa0aQAFdnmZlZNziImJlZYQ4iZmZWmIOImZkV5iBiZmaFOYiYmVlhDiJmZlaYg4iZmRXmIGJmZoW13B3rVl+jp922bXrVJcf3Yk7MrBEcRKxu8gElz8HFrP9wdZaZmRXmIGJmZoU5iJiZWWFuE7GGc+O7Wf/hkoiZmRVWtyAi6RpJT0p6NJf2LUmPSXpE0n9IGpJbdr6k5ZIel3RMLn1iSlsuaVoufYykhSn9Bkk71etczMysvHqWRH4CTOyQtgA4KCLeDvw3cD6ApHHAZODAtM0PJA2QNAD4PnAsMA44Na0LcClweUTsD2wCzqzjuVgVo6fdtu1lZq2lbkEkIn4LbOyQ9quI2Jpm7wVGpulJwJyIeDEiVgLLgcPSa3lErIiILcAcYJIkAUcCc9P2s4CT6nUuZmZWXm+2iXwK+EWaHgGsyS1bm9Iqpe8JPJULSKX0siRNlbRI0qL29vYeyr6ZmfVK7yxJXwa2Atc14ngRMROYCdDW1haNOKbVxj21zJpbw4OIpH8ETgCOiojSF/o6YFRutZEpjQrpfwWGSBqYSiP59c3MrEEaWp0laSJwLnBiRGzOLZoPTJa0s6QxwFjgPuB+YGzqibUTWeP7/BR87gZOSdtPAeY16jzMzCxTt5KIpNnABGAvSWuB6WS9sXYGFmRt49wbEZ+JiMWSbgSWkFVznRURL6f9fBa4AxgAXBMRi9MhzgPmSPoG8BBwdb3OxV7LPbHMDOoYRCLi1DLJFb/oI+Ji4OIy6bcDt5dJX0HWe8vMzHqJ71g3M7PCHETMzKwwBxEzMyvMo/han+F7Rsyaj4OI1cw9ssysI1dnmZlZYQ4iZmZWmIOImZkV5iBiZmaFOYiYmVlhDiJmZlaYg4iZmRXm+0SsT/KNh2bNwSURMzMrzEHEzMwKcxAxM7PCHETMzKwwBxEzMyvMvbOsz3NPLbO+yyURMzMrzCURq8rPEDGzalwSMTOzwhxEzMysMAcRMzMrrG5BRNI1kp6U9GgubaikBZKWpb97pHRJmiFpuaRHJB2a22ZKWn+ZpCm59HdJ+kPaZoYk1etczMysvHqWRH4CTOyQNg24MyLGAnemeYBjgbHpNRW4ErKgA0wHDgcOA6aXAk9a559y23U8lpmZ1VndemdFxG8lje6QPAmYkKZnAfcA56X0ayMigHslDZG0T1p3QURsBJC0AJgo6R7g9RFxb0q/FjgJ+EW9zsf6Bt8zYta3NLpNZO+IWJ+mnwD2TtMjgDW59damtGrpa8uklyVpqqRFkha1t7d37wzMzGybXmtYT6WOaNCxZkZEW0S0DRs2rBGHNDNrCY0OIhtSNRXp75MpfR0wKrfeyJRWLX1kmXQzM2ugRgeR+UCph9UUYF4u/fTUS2s88HSq9roDOFrSHqlB/WjgjrTsb5LGp15Zp+f2ZWZmDVK3hnVJs8kaxveStJasl9UlwI2SzgRWAx9Lq98OHAcsBzYDZwBExEZJFwH3p/UuLDWyA/9M1gNsMFmDuhvVzcwaTFnTROtoa2uLRYsW9XY2mkazjJ3lnlpm9SXpgYho65juO9bNzKwwBxEzMyvMQcTMzApzEDEzs8IcRMzMrDAHETMzK8xBxMzMCnMQMTOzwhxEzMysMAcRMzMrzEHEzMwKcxAxM7PCOh3FV9KbgbUR8aKkCcDbyR5l+1R9s2ZWOz8216x31FISuQl4WdL+wEyyh0RdX9dcmZlZU6gliLwSEVuBjwDfjYh/Bfapb7bMzKwZ1BJEXpJ0KtmTCG9NaTvWL0tmZtYsagkiZwDvAS6OiJWSxgA/rW+2zMysGXTasB4RS4Czc/MrgUvrmSkzM2sOtfTOWgm85hm6EfGmuuTIzMyaRqdBBMg/U3cQ8FFgaH2yY2ZmzaTTNpGI+GvutS4ivgO4I76ZmdVUnXVobnYHspJJLSUYs17hGw/NGqeWYPDt3PRWYBXwsbrkxszMmkotvbM+0NMHlfQF4NNkDfZ/IOtGvA8wB9gTeAD4ZERskbQzcC3wLuCvwMcjYlXaz/nAmcDLwNkRcUdP59XMzCqrqVpK0vHAgWQN6wBExIVFDihpBFmX4XER8bykG4HJwHHA5RExR9IPyYLDlenvpojYX9Jksu7FH5c0Lm13IDAc+LWkt0TEy0XyZWZmXddpw3r6Qv848DlAZL2z9uvmcQcCgyUNBHYB1gNHAnPT8lnASWl6UponLT9KklL6nIh4Md27shw4rJv5MjOzLqjljvW/i4jTyUoDXye7e/0tRQ8YEeuAfwf+RBY8niarvnoqjdEFsBYYkaZHAGvStlvT+nvm08tsY2ZmDVBLEHk+/d0saTjwEt0YgFHSHmSliDFk1VC7AhOL7q/GY06VtEjSovb29noeysyspVQMIpJ+lSZvlTQE+BbwIFnvrNndOOYHgZUR0R4RLwE3A0cAQ1L1FsBIYF2aXkc2/Dxp+e5kDezb0stss52ImBkRbRHRNmzYsG5k3czM8qo1rA8DiIiL0vxNkm4FBkXE09045p+A8ZJ2ISvlHAUsAu4GTiHroTUFmJfWn5/mf5+W3xURIWk+cL2ky8hKNGOB+7qRL+uH8veMgO8bMetp1YLI7pJOLrdAEhFxc5EDRsRCSXPJSjVbgYfIHnZ1GzBH0jdS2tVpk6uBn0paDmwk65FFRCxOPbuWpP2c5Z5ZZmaNVTWIACeQ9cjqKMiqoQqJiOnA9A7JKyjTuyoiXiDrEVZuPxcDFxfNh5mZdU+1ILI6Ij7VsJyYmVnTqdY7q1wJxMzMbJtqQeSTDcuFmZk1pYpBJCIebWRGzMys+dRys6GZmVlZ1W42vDP99fPUzcysrGq9s/aR9HfAiZLm0KGhPSIerGvOzMysz6sWRL4GfJVsOJHLOiwLslF3zcyshVUMIhExF5gr6au5oU/MmpofnWvWs2p5suFFkk4E3peS7omIW+ubLTMzawa1PJTqm8A5ZGNULQHOkfS/650xMzPr+2p5PO7xwCER8QqApFlkAyReUM+MmZlZ31frfSJDctO71yEfZmbWhGopiXwTeEjS3WTdfN8HTKtrrszMrCnU0rA+W9I9wLtT0nkR8URdc2VmZk2hlpIIEbGe7AmDZmZm29QURMz6I98zYtZ9HoDRzMwKqxpEJA2Q9FijMmNmZs2lahCJiJeBxyXt26D8mJlZE6mlTWQPYLGk+4DnSokRcWLdcmVmZk2hliDy1brnwszMmlIt94n8RtJ+wNiI+LWkXYAB9c+amZn1dbUMwPhPwFzgRylpBHBLHfNkZmZNopYuvmcBRwB/A4iIZcAbunNQSUMkzZX0mKSlkt4jaaikBZKWpb97pHUlaYak5ZIekXRobj9T0vrLJE3pTp7MzKzragkiL0bEltKMpIFkTzbsjiuAX0bEW4F3AEvJxuO6MyLGAnfy6vhcxwJj02sqcGXKx1BgOnA4cBgwvRR4zMysMWoJIr+RdAEwWNKHgJ8BPy96QEm7kw3ieDVARGyJiKeAScCstNos4KQ0PQm4NjL3AkMk7QMcAyyIiI0RsQlYAEwsmi8zM+u6WoLINKAd+APwP4Hbga9045hj0v5+LOkhSVdJ2hXYO43RBfAEsHeaHgGsyW2/NqVVSn8NSVMlLZK0qL29vRtZNzOzvFp6Z72SHkS1kKwa6/GI6E511kDgUOBzEbFQ0hV0GFo+IkJSd6vM8vubCcwEaGtr67H9Wv/hcbTMiqmld9bxwB+BGcD3gOWSju3GMdcCayNiYZqfSxZUNqRqKtLfJ9PydcCo3PYjU1qldDMza5BaqrO+DXwgIiZExPuBDwCXFz1gehbJGkkHpKSjyJ7dPh8o9bCaAsxL0/OB01MvrfHA06na6w7gaEl7pAb1o1OamZk1SC13rD8TEctz8yuAZ7p53M8B10naKe3vDLKAdqOkM4HVwMfSurcDxwHLgc1pXSJio6SLgPvTehdGxMZu5svMzLqgYhCRdHKaXCTpduBGsjaRj/LqF3chEfEw0FZm0VFl1g2ye1XK7eca4Jru5MXMzIqrVhL5cG56A/D+NN0ODK5bjszMrGlUDCIRcUYjM2JmZs2n0zYRSWPI2jBG59f3UPDWX7m7r1ntamlYv4Xs7vKfA6/UNTdmZtZUagkiL0TEjLrnxMzMmk4tQeQKSdOBXwEvlhIj4sG65crMzJpCLUHkYOCTwJG8Wp0Vad7MzFpYLUHko8Cb8sPBm5mZQW3DnjwKDKlzPszMrAnVUhIZAjwm6X62bxNxF18zsxZXSxCZXvdcmJlZU6rleSK/aURGzMys+dRyx/ozvPpM9Z2AHYHnIuL19cyYmZn1fbWURHYrTUsS2TPPx9czU2Zm1hxqaRPZJg3Lfku6+XBaZ+ubNTuPo2VWXS3VWSfnZncgew7IC3XLkZmZNY1aSiL554psBVaRVWmZmVmLq6VNxM8VMTOzsqo9HvdrVbaLiLioDvkxM7MmUq0k8lyZtF2BM4E9AQcRM7MWV+3xuN8uTUvaDTgHOAOYA3y70nZmZtY6qraJSBoK/AtwGjALODQiNjUiY2Zm1vdVaxP5FnAyMBM4OCKebViuzMysKVQriXyRbNTerwBfzm5WB0BkDese9sRaim88NHutis8TiYgdImJwROwWEa/PvXbriQAiaYCkhyTdmubHSFooabmkGyTtlNJ3TvPL0/LRuX2cn9Ifl3RMd/NkZmZdU8tDqerlHGBpbv5S4PKI2B/YRNYLjPR3U0q/PK2HpHHAZOBAYCLwA0kDGpR3MzOjl4KIpJHA8cBVaV5kz2yfm1aZBZyUpieledLyo3IDQc6JiBcjYiWwHDisISdgZmZA75VEvgOcC7yS5vcEnoqIrWl+LTAiTY8A1gCk5U+n9bell9lmO5KmSlokaVF7e3sPnoaZWWtreBCRdALwZEQ80KhjRsTMiGiLiLZhw4Y16rBmZv1el4aC7yFHACdKOg4YBLweuAIYImlgKm2MBNal9dcBo4C1kgYCuwN/zaWX5LcxM7MGaHhJJCLOj4iRETGarGH8rog4DbgbOCWtNgWYl6bnp3nS8rvSc03mA5NT760xwFjgvgadhrW40dNu2/Yya2W9URKp5DxgjqRvAA8BV6f0q4GfSloObCQLPETEYkk3AkvIhqg/KyJebny2zcxaV68GkYi4B7gnTa+gTO+qiHgB+GiF7S8GLq5fDs3MrJrevE/EzMyanIOImZkV5iBiZmaFOYiYmVlhDiJmZlZYX+ria9aUPES8tTKXRMzMrDAHETMzK8xBxMzMCnMQMTOzwhxEzMysMAcRMzMrzF18zXqQu/taq3FJxMzMCnMQMTOzwhxEzMysMAcRMzMrzA3rZnXiRnZrBS6JmJlZYQ4iZmZWmIOImZkV5iBiZmaFOYiYmVlhDiJmZlZYw4OIpFGS7pa0RNJiSeek9KGSFkhalv7ukdIlaYak5ZIekXRobl9T0vrLJE1p9LmY1Wr0tNu2vcz6k94oiWwFvhgR44DxwFmSxgHTgDsjYixwZ5oHOBYYm15TgSshCzrAdOBw4DBgeinwmJlZYzQ8iETE+oh4ME0/AywFRgCTgFlptVnASWl6EnBtZO4FhkjaBzgGWBARGyNiE7AAmNi4MzEzs15tE5E0GngnsBDYOyLWp0VPAHun6RHAmtxma1NapfRyx5kqaZGkRe3t7T13AmZmLa7Xhj2R9DrgJuDzEfE3SduWRURIip46VkTMBGYCtLW19dh+zYrwcCjWn/RKSUTSjmQB5LqIuDklb0jVVKS/T6b0dcCo3OYjU1qldDMza5De6J0l4GpgaURclls0Hyj1sJoCzMuln556aY0Hnk7VXncAR0vaIzWoH53SzMysQXqjOusI4JPAHyQ9nNIuAC4BbpR0JrAa+FhadjtwHLAc2AycARARGyVdBNyf1rswIjY25AzMzAzohSASEf8XUIXFR5VZP4CzKuzrGuCansudmZl1hZ8nYtaL3Mhuzc7DnpiZWWEuiZj1ES6VWDNyScTMzApzEDEzs8IcRMzMrDC3iZj1QW4fsWbhkoiZmRXmkohZH+dSifVlLomYmVlhLomYNRGXSqyvcUnEzMwKc0nErEnlSyV5LqFYIzmImPUzrvKyRnJ1lpmZFeaSiFk/5lKJ1ZuDiFmLcECxenAQMWtBHRvlHVSsKAcRM3MpxQpzEDGz7VTqOpznQGMlDiJm1mUuuViJg4iZdYsDSmtzEDGzHlNLVVglDkDNyUHEzPqErgYgB52+oemDiKSJwBXAAOCqiLikl7NkZg3Q1Q4AHmusPpo6iEgaAHwf+BCwFrhf0vyIWNK7OTOzvqCWQNOdKrgi+lvQauogAhwGLI+IFQCS5gCTAAcRM+uTGh20SuoVvJo9iIwA1uTm1wKHd1xJ0lRgapp9VtLjBY+3F/CXgts2K59za2i1c26180WXdvuc9yuX2OxBpCYRMROY2d39SFoUEW09kKWm4XNuDa12zq12vlC/c272oeDXAaNy8yNTmpmZNUCzB5H7gbGSxkjaCZgMzO/lPJmZtYymrs6KiK2SPgvcQdbF95qIWFzHQ3a7SqwJ+ZxbQ6udc6udL9TpnBUR9divmZm1gGavzjIzs17kIGJmZoU5iNRA0kRJj0taLmlab+enHiSNknS3pCWSFks6J6UPlbRA0rL0d4/ezmtPkzRA0kOSbk3zYyQtTNf7htRpo9+QNETSXEmPSVoq6T39/TpL+kL6XD8qabakQf3tOku6RtKTkh7NpZW9rsrMSOf+iKRDix7XQaQTuaFVjgXGAadKGte7uaqLrcAXI2IcMB44K53nNODOiBgL3Jnm+5tzgKW5+UuByyNif2ATcGav5Kp+rgB+GRFvBd5Bdu799jpLGgGcDbRFxEFknXAm0/+u80+AiR3SKl3XY4Gx6TUVuLLoQR1EOrdtaJWI2AKUhlbpVyJifUQ8mKafIftiGUF2rrPSarOAk3olg3UiaSRwPHBVmhdwJDA3rdKvzlnS7sD7gKsBImJLRDxFP7/OZD1RB0saCOwCrKefXeeI+C2wsUNypes6Cbg2MvcCQyTtU+S4DiKdKze0yoheyktDSBoNvBNYCOwdEevToieAvXsrX3XyHeBc4JU0vyfwVERsTfP97XqPAdqBH6cqvKsk7Uo/vs4RsQ74d+BPZMHjaeAB+vd1Lql0XXvse81BxLYj6XXATcDnI+Jv+WWR9QfvN33CJZ0APBkRD/R2XhpoIHAocGVEvBN4jg5VV/3wOu9B9st7DDAc2JXXVvv0e/W6rg4inWuZoVUk7UgWQK6LiJtT8oZSMTf9fbK38lcHRwAnSlpFVk15JFl7wZBU7QH973qvBdZGxMI0P5csqPTn6/xBYGVEtEfES8DNZNe+P1/nkkrXtce+1xxEOtcSQ6uktoCrgaURcVlu0XxgSpqeAsxrdN7qJSLOj4iRETGa7LreFRGnAXcDp6TV+ts5PwGskXRASjqK7NEJ/fY6k1VjjZe0S/qcl865317nnErXdT5weuqlNR54Olft1SW+Y70Gko4jqzsvDa1yce/mqOdJei/wn8AfeLV94AKydpEbgX2B1cDHIqJj413TkzQB+FJEnCDpTWQlk6HAQ8A/RMSLvZi9HiXpELKOBDsBK4AzyH5Q9tvrLOnrwMfJeiE+BHyarA2g31xnSbOBCWTD3G8ApgO3UOa6pmD6PbJqvc3AGRGxqNBxHUTMzKwoV2eZmVlhDiJmZlaYg4iZmRXmIGJmZoU5iJiZWWEOImZmVpiDiJmZFeYgYgZI2lPSw+n1hKR1ufmGP2dC0mhJz0t6OJe2t6TrJa2Q9ICk30v6SCf7uVvSMR3SPi/pSkmD0/ltkbRXnU7F+jkHETMgIv4aEYdExCHAD8meM3FIem3ppWz9MeWnNCzNLcBvI+JNEfEusqFaRnayj9lpvbzJwOyIeD7t/889mWlrLQ4iZjWQdEv69b9Y0tSUNrrDU+S+JOnfymw7Oz057z5JqyUdXyALRwJbIuKHpYSIWB0R380d5x/SMR6W9KP0QLW5wPGl0lQa5n842RA3Zt3mIGJWm0+lX/9twNmS9uzCtu8AVkTEYcBpZGMaddWBwIOVFkp6G9nYUEek0sXLwGlp/Kv7yJ5kB1kp5MbweEfWQwZ2voqZkQWOUvvDKLLHij7R2UaSBgHDgK+npCVA6TnXZwCHA8cAdwAPRcSPasmMpO8D7yUrnbybbGTadwH3ZzVfDObVYb9LVVrz0t9mfwys9SEOImadSCP8fhB4T0RslnQPMIhsRNh8aX5Qmc0PApZFxAtp/lDgvwAi4seS5gE7RsRnOsnGYuDvSzMRcVZqDC+NvCpgVkScX2bbecDlkg4Fdmmxh3BZnbk6y6xzuwObUgB5KzA+pW8A3pB6du0MnFBm23cA+0oalB5D+3Xg8tzyd5E9qrUzdwGDJP2vXNouuek7gVMkvQFA0lBJ+wFExLNkz864hqxUYtZjHETMOvdLYKCkpcAlwL0A6Sl5F5K1OSwAHiuz7TvInqS3kOwBZ1dGxO9yy2sKIqkN4yTg/ZJWSroPmAWcl5YvAb4C/ErSIyk/++R2MTvlxUHEepSfJ2JWR5J+A0yNiMcrLJ9N1mj/fIf00cCtEXFQA/K4CmiLiL/U+1jW/7gkYlZfbwaWVVoYEad2DCDJy8Du+ZsNe1rpZkNgR159mqVZl7gkYmZmhbkkYmZmhTmImJlZYQ4iZmZWmIOImZkV5iBiZmaFOYiYmVlhDiJmZlbY/wexTnQsDGYNRQAAAABJRU5ErkJggg==", "text/plain": [ "