Publication listings
This is a list of the publications, along with the NSF PAR status.
TODO: Needs an NSF PAR ID
For each of these, nsf-par-id: <number>
should be added to the datafile. If
an nsf-par-id
really is not needed, set needs-nsf-par: false
explicitly.
-
_data/publications/1845084.yml
: pyhf: pure-Python implementation of HistFactory statistical models, L. Heinrich, M. Feickert, G. Stark and K. Cranmer, J.Open Source Softw. 6 2823 (2021) (04 Feb 2021) [1 citation]. -
_data/publications/1831598.yml
: Recent developments in histogram libraries, H. Dembinski, J. Pivarski and H. Schreiner, EPJ Web Conf. 245 05014 (2020) (20 Nov 2020). -
_data/publications/1832223.yml
: Constraining effective field theories with machine learning, J. Brehmer, K. Cranmer, I. Espejo, A. Held, F. Kling, G. Louppe and J. Pavez, EPJ Web Conf. 245 06026 (2020) (16 Nov 2020). -
_data/publications/1805478.yml
: The Scikit HEP Project -- overview and prospects, E. Rodrigues et. al., EPJ Web Conf. 245 06028 (2020) (07 Jul 2020). -
_data/publications/1804620.yml
: WLCG Networks: Update on Monitoring and Analytics, M. Babik, S. McKee, P. Andrade, B. Bockelman, R. Gardner, E. Fajardo Hernandez, E. Martelli, I. Vukotic, D. Weitzel and M. Zvada, EPJ Web Conf. 245 07053 (2020) (01 Jul 2020). -
_data/publications/1804608.yml
: Network Capabilities for the HL-LHC Era, M. Babik and S. McKee, EPJ Web Conf. 245 07051 (2020) (01 Jul 2020). -
_data/publications/1798734.yml
: Speeding up particle track reconstruction using a parallel Kalman filter algorithm, S. Lantz et. al., JINST 15 P09030 (2020) (29 May 2020). -
_data/publications/1796248.yml
: The Scalable Systems Laboratory: a Platform for Software Innovation for HEP, R. Gardner, L. Bryant, M. Neubauer, F. Wuerthwein, J. Stephen and A. Chien, EPJ Web Conf. 245 05019 (2020) (13 May 2020). -
_data/publications/1785309.yml
: Equivariant flow-based sampling for lattice gauge theory, G. Kanwar, M. Albergo, D. Boyda, K. Cranmer, D. Hackett, S. Racanière, D. Rezende and P. Shanahan, Phys.Rev.Lett. 125 121601 (2020) (13 Mar 2020) [24 citations]. -
_data/publications/1781096.yml
: Reconstruction of Charged Particle Tracks in Realistic Detector Geometry Using a Vectorized and Parallelized Kalman Filter Algorithm, G. Cerati et. al., EPJ Web Conf. 245 02013 (2020) (15 Feb 2020) [1 citation]. -
_data/publications/1683311.yml
: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model, Advances in Neural Information Processing Systems 33 (NeurIPS) (20 Jul 2018) [3 citations]. published, and acknowledges IRIS-HEP, but no DOI from NIPS proceedings website?
Has an NSF PAR ID
For each of these, nsf-par-id
has been added.
-
_data/publications/1771853.yml
: Allen: A high level trigger on GPUs for LHCb, R. Aaij et. al., Comput.Softw.Big Sci. 4 7 (2020) (19 Dec 2019) [9 citations] [NSF PAR]. -
_data/publications/1752736.yml
: Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning, The Astrophysical Journal, Volume 886, Number 1; DOI:10.3847/1538-4357/ab4c41 (19 Nov 2019) [24 citations] [NSF PAR]. published in Astrophysical Journal, see citation. -
_data/publications/dahlgren-pdsw19.yml
: Towards Physical Design Management in Storage Systems, Kathryn Dahlgren, Jeff LeFevre, Ashay Shirwadkar, Ken Iizawa, Aldrin Montana, Peter Alvaro, Carlos Maltzahn, 4th International Parallel Data Systems Workshop (PDSW 2019, co-located with SC’19), Denver, CO, November 18, 2019. (18 Nov 2019) [NSF PAR]. -
_data/publications/1763198.yml
: The frontier of simulation-based inference, Proceedings of the National Academy of Sciences DOI:10.1073/pnas.1912789117 (04 Nov 2019) [15 citations] [NSF PAR]. -
_data/publications/1746275.yml
: MadMiner: Machine learning-based inference for particle physics, J. Brehmer, F. Kling, I. Espejo and K. Cranmer, Comput.Softw.Big Sci. 4 3 (2020) (24 Jul 2019) [26 citations] [NSF PAR]. -
_data/publications/1742890.yml
: Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale, Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (SC19), November 17--22, 2019 DOI:10.1145/3295500.3356180 (07 Jul 2019) [4 citations] [NSF PAR]. -
_data/publications/1740667.yml
: A hybrid deep learning approach to vertexing, R. Fang, H. Schreiner, M. Sokoloff, C. Weisser and M. Williams, J.Phys.Conf.Ser. 1525 012079 (2020) (19 Jun 2019) [2 citations] [NSF PAR]. -
_data/publications/1738733.yml
: Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures with the CMS Detector, G. Cerati et. al., J.Phys.Conf.Ser. 1525 012078 (2020) (05 Jun 2019) [3 citations] [NSF PAR]. -
_data/publications/1738305.yml
: Effective LHC measurements with matrix elements and machine learning, J. Brehmer, K. Cranmer, I. Espejo, F. Kling, G. Louppe and J. Pavez, J.Phys.Conf.Ser. 1525 012022 (2020) (04 Jun 2019) [10 citations] [NSF PAR]. -
_data/publications/1730403.yml
: FPGA-accelerated machine learning inference as a service for particle physics computing, J. Duarte et. al., Comput.Softw.Big Sci. 3 13 (2019) (18 Apr 2019) [10 citations] [NSF PAR]. -
_data/publications/1726790.yml
: Machine learning and the physical sciences, G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto and L. Zdeborová, Rev.Mod.Phys. 91 045002 (2019) (25 Mar 2019) [115 citations] [NSF PAR]. -
_data/publications/1722059.yml
: The Machine Learning Landscape of Top Taggers, G. Kasieczka et. al., SciPost Phys. 7 014 (2019) (26 Feb 2019) [79 citations] [NSF PAR].
No explicit request for ID
These do not have NSF PAR IDs, and probably do not need one; either because
they are arXiv only, have an explicit false for needs-nsf-par
, or were
manually entered. Many of the arXiv publications are preprints for papers submitted to journals or to the proceedings of various conferences, and will eventually need an NSF PAR ID once published.
-
_data/publications/1858493.yml
: Exact and Approximate Hierarchical Clustering Using A*, C. Greenberg, S. Macaluso, N. Monath, A. Dubey, P. Flaherty, M. Zaheer, A. Ahmed, K. Cranmer and A. Mccallum, arXiv 2104.07061 (14 Apr 2021). -
_data/publications/cabinetry-vchep2021.yml
: Building and steering template fits with cabinetry, K. Cranmer, A. Held DOI: 10.5281/zenodo.4627038 (22 Mar 2021). -
_data/publications/1852909.yml
: hep_tables: Heterogeneous Array Programming for HEP, Watts, Gordon, arXiv 2103.11525 (21 Mar 2021). -
_data/publications/1851403.yml
: Physics and Computing Performance of the Exa.TrkX TrackML Pipeline, X. Ju et. al., arXiv 2103.06995 (11 Mar 2021). -
_data/publications/1850625.yml
: Progress in developing a hybrid deep learning algorithm for identifying and locating primary vertices, S. Akar, G. Atluri, T. Boettcher, M. Peters, H. Schreiner, M. Sokoloff, M. Stahl, W. Tepe, C. Weisser and M. Williams, arXiv 2103.04962 (08 Mar 2021). -
_data/publications/1849745.yml
: Distributed statistical inference with pyhf enabled through funcX, M. Feickert, L. Heinrich, G. Stark and B. Galewsky, arXiv 2103.02182 (03 Mar 2021). -
_data/publications/1849648.yml
: Coffea-casa: an analysis facility prototype, M. Adamec, G. Attebury, K. Bloom, B. Bockelman, C. Lundstedt, O. Shadura and J. Thiltges, arXiv 2103.01871 (02 Mar 2021). -
_data/publications/1849748.yml
: FuncADL: Functional Analysis Description Language, M. Proffitt and G. Watts, arXiv 2103.02432 (02 Mar 2021). -
_data/publications/1849306.yml
: An intelligent Data Delivery Service for and beyond the ATLAS experiment, W. Guan, T. Maeno, B. Bockelman, T. Wenaus, F. Lin, S. Padolski, R. Zhang and A. Alekseev, arXiv 2103.00523 (28 Feb 2021). -
_data/publications/1849307.yml
: Software Training in HEP, S. Malik, S. Meehan, K. Lieret, M. Evans, M. Villanueva, D. Katz, G. Stewart and P. Elmer, arXiv 2103.00659 (28 Feb 2021). -
_data/publications/vchep-awkwardforth.yml
: AwkwardForth: accelerating Uproot with an internal DSL, J. Pivarski, I. Osborne, P. Das, D. Lange and P. Elmer, arXiv 2102.13516 (24 Feb 2021). -
_data/publications/1834621.yml
: Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs, A. Heintz et. al., arXiv 2012.01563 (30 Nov 2020) [6 citations]. -
_data/publications/1830592.yml
: Hierarchical clustering in particle physics through reinforcement learning, J. Brehmer, S. Macaluso, D. Pappadopulo and K. Cranmer, arXiv 2011.08191 (16 Nov 2020). -
_data/publications/servicex-CHEP.yml
: ServiceX A Distributed, Caching, Columnar Data Delivery Service, ServiceX A Distributed, Caching, Columnar Data Delivery Service B. Galewsky, R. Gardner, L. Gray, M. Neubauer, J. Pivarski, M. Proffitt, I. Vukotic, G. Watts, M. Weinberg EPJ Web Conf. 245 04043 (2020) DOI: 10.1051/epjconf/202024504043 (16 Nov 2020). -
_data/publications/chakraborty-sc20.yml
: Enabling Seamless Execution of Computational and Data Science Workflows on HPC and Cloud with the Popper Container-Native Automation Engine, Chakraborty J, Maltzahn C, and Jimenez I. 2020 2nd International Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC, co-located with SC'20) (12 Nov 2020). -
_data/publications/1824092.yml
: Semi-parametric gamma-ray modeling with Gaussian processes and variational inference, S. Mishra-Sharma and K. Cranmer, arXiv 2010.10450 (20 Oct 2020) [1 citation]. -
_data/publications/1823735.yml
: FPGAs-as-a-Service Toolkit (FaaST), D. Rankin et. al., arXiv 2010.08556 (16 Oct 2020) [5 citations]. -
_data/publications/1822448.yml
: Simulation-based inference methods for particle physics, J. Brehmer and K. Cranmer, arXiv 2010.06439 (13 Oct 2020) [1 citation]. -
_data/publications/chakraborty-summer2021-fellowship.yml
: Reproducible, Scalable Benchmarks for SkyhookDM using Popper, Chakraborty J. IRIS-HEP Summer 2020 Fellowship Report (12 Oct 2020). -
_data/publications/1822229.yml
: Software Sustainability $\&$ High Energy Physics, D. Katz et. al., arXiv 2010.05102 (10 Oct 2020). -
_data/publications/snowmass2021-analysis-ecosystem-loi.yml
: Snowmass 2021 Letter of Interest: Analysis Ecosystem at the HL-LHC, G. Watts Snowmass 2021 Letter of Interest (10 Sep 2020). -
_data/publications/snowmass2021-MLMELA.yml
: Snowmass 2021 Letter of Interest: Matrix Element Method in the Machine Learning Era, P. Chang, M. Feickert, and Mark S. Neubauer, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-GNNs.yml
: Snowmass 2021 Letter of Interest: Graph Data Structures and Graph Neural Networks for High Energy Physics, X. Ju, M. Neubauer, L. Gray, A. Aurisano, T. R. F. P. Tomei, J.-R. Vlimant, J. Hewes, K. Terao, S. Thais, D. Murnane, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-sustainability.yml
: Snowmass 2021 Letter of Interest: Software Sustainability and HEP, Daniel S. Katz, Sudhir Malik, Mark S. Neubauer, and Graeme A. Stewart, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-training.yml
: Snowmass2021 Letter of Interest : Coherent Vision for Enabling Software Training in HEP, Daniel S. Katz, Clemens Lange, Kilian Lieret, Sudhir Malik, Samuel Meehan, Kevin Nelson, Robin Newhouse, Meirin Oan Evans, Adam Parker, Mason Proffitt, Eduardo Rodrigues, Amber Roepe, Giordon Stark, Graeme Stewart, Sadhana Verma, Leonora Vesterbacka, and Claire David, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-differentiable-programming.yml
: Snowmass 2021 Letter of Interest: Differentiable Programming in High-Energy Physics, Atilim Gunes Baydin, Kyle Cranmer, Matthew Feickert, Lindsey Gray, Lukas Heinrich, Alexander Held, Andrew Melo, Mark Neubauer, Jannicke Pearkes, Nathan Simpson, Nick Smith, Giordon Stark, Savannah Thais, Vassil Vassilev, and Gordon Watts, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-emerging-techniques-jets.yml
: Snowmass 2021 Letter of Interest: Emerging Computational Techniques for Jet Physics, Sebastian Macaluso, Kyle Cranmer, Matthew Drnevich, Johann Brehmer (New York University); Duccio Pappadopulo (N.A.); Atılım Gunes Baydin (Oxford); Matthew Schwartz (Harvard), Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-MLedu.yml
: Snowmass 2021 Letter of Interest: Particle Physics and Machine Learning in Education, Mark S. Neubauer, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-reproducibility.yml
: Snowmass 2021 Letter of Interest: Long Term Reproducibility and Sustainability of Scientific Software, Matthew Feickert, Giordon Stark, Steven Gardiner, and Yu-Dai Tsai, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-FastML.yml
: Snowmass 2021 Letter of Interest: Fast Machine Learning, M.-A. Flechas, M. Atkinson, G.-Di Guglielmo, J. Duarte, F. Fahim, P. Harris, C. Herwig, B. Holzman, R. Kastner, M. Liu, C.-S. Moon, M. Neubauer, K. Pedro, A.-Q. Parra, D. Rankin, R. Rivera, N. Tran, M. Wang, T. Yang, J. Agar9, and E.-A. Huerta, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/snowmass2021-boost.yml
: Snowmass 2021 Letter of Interest: Jets and Jet Substructure at Future Colliders, The BOOST Community, Snowmass 2021 Letters of Interest (31 Aug 2020). -
_data/publications/1811378.yml
: Sampling using $SU(N)$ gauge equivariant flows, D. Boyda, G. Kanwar, S. Racanière, D. Rezende, M. Albergo, K. Cranmer, D. Hackett and P. Shanahan, arXiv 2008.05456 (12 Aug 2020) [15 citations]. -
_data/publications/1810547.yml
: Secondary Vertex Finding in Jets with Neural Networks, J. Shlomi, S. Ganguly, E. Gross, K. Cranmer, Y. Lipman, H. Serviansky, H. Maron and N. Segol, arXiv 2008.02831 (06 Aug 2020) [3 citations]. -
_data/publications/1808088.yml
: GPU coprocessors as a service for deep learning inference in high energy physics, J. Krupa et. al., arXiv 2007.10359 (20 Jul 2020) [7 citations]. -
_data/publications/schreiner-SciPy20.yml
: Boost-histogram: High-Performance Histograms as Objects, Henry Schreiner, Hans Dembinski, Shuo Liu, Jim Pivarski, SciPy 2020 (07 Jul 2020). -
_data/publications/1804768.yml
: An updated hybrid deep learning algorithm for identifying and locating primary vertices, S. Akar, T. J. Boettcher, S. Carl, H. F. Schreiner, M. D. Sokoloff, M. Stahl, C. Weisser, M. Williams, arXiv:2007.01023 [physics.ins-det] (Submitted to CTD2020) (02 Jul 2020). -
_data/publications/1804843.yml
: Tracking with A Common Tracking Software, Ai, Xiaocong, arXiv 2007.01239 (02 Jul 2020) [1 citation]. -
_data/publications/povm-medrxiv.yml
: Inexpensive multi-patient respiratory monitoring system for helmet ventilation during COVID-19 pandemic, Philippe Bourrianne, Stanley Chidzik, Daniel Cohen, Peter Elmer, Thomas Hallowell, Todd J. Kilbaugh, David Lange, Andrew M. Leifer, Daniel R. Marlow, Peter D. Meyers, Edna Normand, Janine Nunes, Myungchul Oh, Lyman Page, Talmo Periera, Jim Pivarski, Henry Schreiner, Howard A. Stone, David W. Tank, Stephan Thiberge and Christopher Tully, medRxiv https://doi.org/10.1101/2020.06.29.20141283 (30 Jun 2020). medRxiv preprint -
_data/publications/1802414.yml
: Discovering Symbolic Models from Deep Learning with Inductive Biases, M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel and S. Ho, arXiv 2006.11287 (19 Jun 2020) [5 citations]. -
_data/publications/liu-hotedge20.yml
: Scale-out Edge Storage Systems with Embedded Storage Nodes to Get Better Availability and Cost-Efficiency At the Same Time, Jianshen Liu, Matthew Leon Curry, Carlos Maltzahn, and Philip Kufeldt, 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge ’20), Santa Clara, CA, June 25-26 2020 (26 May 2020). -
_data/publications/lefevre-login20.yml
: SkyhookDM: Data Processing in Ceph with Programmable Storage, Jeff LeFevre and Carlos Maltzahn, USENIX ;login: Magazine (12 May 2020). -
_data/publications/1789128.yml
: Flows for simultaneous manifold learning and density estimation, Advances in Neural Information Processing Systems 34 (NeurIPS2020) (30 Mar 2020) [7 citations]. -
_data/publications/wguan-chep19.yml
: Towards an Intelligent Data Delivery Service, Wen Guan, Tadashi Maeno, Gancho Dimitrov, Brian Paul Bockelman, Torre Wenaus, Vakhtang Tsulaia, Nicolo Magini, CHEP2019 (14 Mar 2020). -
_data/publications/uta-nsdi19.yml
: Is big data performance reproducible in modern cloud networks?, Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup, 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’20), Santa Clara, CA, February 25-27 2020 (26 Feb 2020). -
_data/publications/1782435.yml
: Data Structures & Algorithms for Exact Inference in Hierarchical Clustering, The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:2467-2475, 2021. (26 Feb 2020) [1 citation]. -
_data/publications/lefevre-vault20.yml
: Scaling databases and file APIs with programmable Ceph object storage, Jeff LeFevre and Carlos Maltzahn, 2020 Linux Storage and Filesystems Conference (Vault'20, co-located with FAST'20 and NSDI'20), Santa Clara, CA, February 24-25 2020 (24 Feb 2020). This is a presentation at Usenix conference -
_data/publications/1781879.yml
: Set2Graph: Learning Graphs From Sets, Advances in Neural Information Processing Systems 34 (NeurIPS2020) (20 Feb 2020) [3 citations]. -
_data/publications/1779199.yml
: Normalizing Flows on Tori and Spheres, Thirty-seventh International Conference on Machine Learning (06 Feb 2020) [4 citations]. Accepted at Thirty-seventh International Conference on Machine Learning -
_data/publications/chakraborty-ecp20.yml
: Popper 2.0: A Container-native Workflow Execution Engine For Testing Complex Applications and Validating Scientific Claims, Jayjeet Chakraborty, Ivo Jimenez, Carlos Maltzahn, Arshul Mansoori, and Quincy Wofford, Poster at 2020 Exaxcale Computing Project Annual Meeting, Houston, TX, February 3-7, 2020, 2020 (03 Feb 2020). -
_data/publications/chu-chep19.yml
: SkyhookDM: Mapping Scientific Datasets to Programmable Storage, Aaron Chu and Jeff LeFevre and Carlos Maltzahn and Aldrin Montana and Peter Alvaro and Dana Robinson and Quincey Koziol, arXiv:2007.01789 [cs.DS] (Submitted to CHEP 2019) (08 Nov 2019). -
_data/publications/bbockelm-chep19-tokens.yml
: WLCG Authorisation from X.509 to Tokens, Brian Bockelman and Andrea Ceccanti and Ian Collier and Linda Cornwall and Thomas Dack and Jaroslav Guenther and Mario Lassnig and Maarten Litmaath and Paul Millar and Mischa Sallé and Hannah Short and Jeny Teheran and Romain Wartel, arXiv:2007.03602 [cs.CR] (Submitted to CHEP 2019) (08 Nov 2019). -
_data/publications/bbockelm-chep19-http-tpc.yml
: Third-party transfers in WLCG using HTTP, Brian Bockelman and Andrea Ceccanti and Fabrizio Furano and Paul Millar and Dmitry Litvintsev and Alessandra Forti, arXiv:2007.03490 [cs.DC] (Submitted to CHEP 2019) (08 Nov 2019). -
_data/publications/1760401.yml
: Extending RECAST for Truth-Level Reinterpretations, A. Schuy, L. Heinrich, K. Cranmer and S. Hsu, arXiv 1910.10289 (Submitted to APS DPF 2019) (22 Oct 2019). -
_data/publications/1758014.yml
: Acts: A common tracking software, Ai, Xiaocong, arXiv 1910.03128 (07 Oct 2019) [6 citations]. -
_data/publications/1758925.yml
: Hamiltonian Graph Networks with ODE Integrators, A. Sanchez-Gonzalez, V. Bapst, K. Cranmer and P. Battaglia, arXiv 1909.12790 (Submitted to Machine Learning For the Physical Sciences NeurIPS2019 Workshop) (27 Sep 2019) [3 citations]. presented at Machine Learning For the Physical Sciences NeurIPS2019 Workshop - missing IRIS-HEP acknowledgement -
_data/publications/atlas-recast.yml
: RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two b-quarks, ATL-PHYS-PUB-2019-032 (12 Aug 2019). ATLAS PUB NOTE -
_data/publications/atlas-pyhf.yml
: Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods, ATL-PHYS-PUB-2019-029 (05 Aug 2019). ATLAS PUB NOTE -
_data/publications/1741870.yml
: Speeding up Particle Track Reconstruction in the CMS Detector using a Vectorized and Parallelized Kalman Filter Algorithm, G. Cerati et. al., arXiv 1906.11744 (Submitted to CTD/WIT 2019) (27 Jun 2019) [4 citations]. -
_data/publications/david-precs19.yml
: Reproducible Computer Network Experiments: A Case Study Using Popper, Andrea David, Mariette Souppe, Ivo Jimenez, Katia Obraczka, Sam Mansfield, Kerry Veenstra, Carlos Maltzahn, 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems (P-RECS, co-located with HPDC’19), Phoenix, AZ, June 24, 2019. (24 Jun 2019). DOI? -
_data/publications/liu-hpc-iodc19.yml
: MBWU: Benefit Quantification for Data Access Function Offloading, Jianshen Liu, Philip Kufeldt, Carlos Maltzahn, HPC I/O in the Data Center Workshop (HPC-IODC 2019, co-located with ISC-HPC 2019), Frankfurt, Germany, June 20, 2019. (20 Jun 2019). No Ackwowledgements? DOI? -
_data/publications/lefevre-vault19.yml
: Skyhook: Programmable storage for databases, Jeff LeFevre, Noah Watkins, Michael Sevilla, and Carlos Maltzahn, 2020 Linux Storage and Filesystems Conference (Vault'19, co-located with FAST'19), Santa Clara, CA, February 25-26 2019 (25 Feb 2019). This is a presentation at Usenix conference
Prior or related work
These do not need to have NSF PAR IDs (at least for IRIS-HEP purposes) as they are prior or related work.
-
_data/publications/1844768.yml
: A deep search for decaying dark matter with XMM-Newton blank-sky observations, J. Foster, M. Kongsore, C. Dessert, Y. Park, N. Rodd, K. Cranmer and B. Safdi, arXiv 2102.02207 (03 Feb 2021) [3 citations]. -
_data/publications/1842016.yml
: Introduction to Normalizing Flows for Lattice Field Theory, M. Albergo, D. Boyda, D. Hackett, G. Kanwar, K. Cranmer, S. Racanière, D. Rezende and P. Shanahan, arXiv 2101.08176 (20 Jan 2021). -
_data/publications/1675782.yml
: Mining gold from implicit models to improve likelihood-free inference, Proceedings of the National Academy of Sciences; DOI:10.1073/pnas.1915980117 (20 Feb 2020) [40 citations]. -
_data/publications/1761605.yml
: Improving WLCG networks through monitoring and analytics, M. Babik, S. McKee, B. Bockelman, E. Fajardo Hernandez, E. Martelli, I. Vukotic, D. Weitzel and M. Zvada, EPJ Web Conf. 214 08006 (2019) (17 Sep 2019). -
_data/publications/1750323.yml
: Benchmarking simplified template cross sections in $WH$ production, J. Brehmer, S. Dawson, S. Homiller, F. Kling and T. Plehn, JHEP 11 034 (2019) (19 Aug 2019) [20 citations]. -
_data/publications/1704097.yml
: Open is not enough, X. Chen et. al., Nature Phys. 15 (2019) (15 Nov 2018) [13 citations]. -
_data/publications/jimenez-rescue-hpc18.yml
: Spotting Black Swans With Ease: The Case for a Practical Reproducibility Platform, Ivo Jimenez, Carlos Maltzahn, st Workshop on Reproducible, Customizable and Portable Workflows for HPC (ResCuE-HPC’18, co-located with SC’18), Dallas, TX, November 11, 2018. (11 Nov 2018). -
_data/publications/1699882.yml
: Analysis Preservation and Systematic Reinterpretation within the ATLAS experiment, K. Cranmer and L. Heinrich, J.Phys.Conf.Ser. 1085 042011 (2018) (18 Oct 2018) [2 citations]. -
_data/publications/maricq-osdi18.yml
: Taming performance variability, Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan Stutsman, and Robert Ricci, 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18), Carlsbad, CA, October 8-10, 2018. (08 Oct 2018). -
_data/publications/1681439.yml
: Machine Learning in High Energy Physics Community White Paper, K. Albertsson et. al., J.Phys.Conf.Ser. 1085 022008 (2018) (08 Jul 2018) [81 citations]. -
_data/publications/1644100.yml
: A Roadmap for HEP Software and Computing R&D for the 2020s, J. Albrecht et. al., Comput.Softw.Big Sci. 3 7 (2019) (18 Dec 2017) [94 citations]. -
_data/publications/1644096.yml
: Strategic Plan for a Scientific Software Innovation Institute (S2I2) for High Energy Physics, P. Elmer, M. Neubauer and M. Sokoloff, arXiv 1712.06592 (18 Dec 2017) [7 citations]. -
_data/publications/1615703.yml
: Adversarial Variational Optimization of Non-Differentiable Simulators, PMLR 89:1438-1447, 2019 (22 Jul 2017) [10 citations]. published in proceedings of AISTATS 2019 -
_data/publications/1603090.yml
: Yadage and Packtivity - analysis preservation using parametrized workflows, K. Cranmer and L. Heinrich, J.Phys.Conf.Ser. 898 102019 (2017) (06 Jun 2017) [14 citations]. -
_data/publications/1592380.yml
: HEPData: a repository for high energy physics data, E. Maguire, L. Heinrich and G. Watt, J.Phys.Conf.Ser. 898 102006 (2017) (18 Apr 2017) [69 citations]. -
_data/publications/1511884.yml
: QCD-Aware Recursive Neural Networks for Jet Physics, G. Louppe, K. Cho, C. Becot and K. Cranmer, JHEP 01 057 (2019) (02 Feb 2017) [128 citations].