Publications:
by date.
Publications by the IRIS-HEP team
- Towards Physical Design Management in Storage Systems, Kathryn Dahlgren, Jeff LeFevre, Ashay Shirwadkar, Ken Iizawa, Aldrin Montana, Peter Alvaro, Carlos Maltzahn, 4th International Parallel Data Systems Workshop (PDSW 2019, co-located with SC’19), Denver, CO, November 18, 2019. (18 Nov 2019).
- The frontier of simulation-based inference, K. Cranmer, J. Brehmer and G. Louppe, arXiv 1911.01429 (Submitted to National Academy of Sciences) (04 Nov 2019).
- Extending RECAST for Truth-Level Reinterpretations, A. Schuy, L. Heinrich, K. Cranmer and S. Hsu, arXiv 1910.10289 (Submitted to DPF2019) (22 Oct 2019).
- Hamiltonian Graph Networks with ODE Integrators, A. Sanchez-Gonzalez, V. Bapst, K. Cranmer and P. Battaglia, arXiv 1909.12790 (27 Sep 2019).
- Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning, J. Brehmer, S. Mishra-Sharma, J. Hermans, G. Louppe and K. Cranmer, arXiv 1909.02005 (04 Sep 2019).
- Benchmarking simplified template cross sections in $WH$ production, J. Brehmer, S. Dawson, S. Homiller, F. Kling and T. Plehn, JHEP 11 034 (2019) (19 Aug 2019).
- RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two b-quarks, ATL-PHYS-PUB-2019-032 (12 Aug 2019).
- Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods, ATL-PHYS-PUB-2019-029 (05 Aug 2019).
- MadMiner: Machine learning-based inference for particle physics, J. Brehmer, F. Kling, I. Espejo and K. Cranmer, arXiv 1907.10621 (24 Jul 2019).
- Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale, A. Baydin, L. Shao, W. Bhimji, L. Heinrich, L. Meadows et. al., arXiv 1907.03382 (07 Jul 2019).
- MBWU: Benefit Quantification for Data Access Function Offloading, Jianshen Liu, Philip Kufeldt, Carlos Maltzahn, HPC I/O in the Data Center Workshop (HPC-IODC 2019, co-located with ISC-HPC 2019), Frankfurt, Germany, June 20, 2019. (20 Jun 2019).
- A hybrid deep learning approach to vertexing, R. Fang, H. Schreiner, M. Sokoloff, C. Weisser and M. Williams, arXiv 1906.08306 (Submitted to ACAT 2019) (19 Jun 2019).
- Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures with the CMS Detector, G. Cerati, P. Elmer, B. Gravelle, M. Kortelainen, V. Krutelyov et. al., arXiv 1906.02253 (05 Jun 2019).
- Effective LHC measurements with matrix elements and machine learning, J. Brehmer, K. Cranmer, I. Espejo, F. Kling, G. Louppe et. al., arXiv 1906.01578 (04 Jun 2019).
- FPGA-accelerated machine learning inference as a service for particle physics computing, J. Duarte, P. Harris, S. Hauck, B. Holzman, S. Hsu et. al., Comput.Softw.Big Sci. 3 13 (2019) (18 Apr 2019).
- Machine learning and the physical sciences, G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld et. al., Rev.Mod.Phys. 91 045002 (2019) (25 Mar 2019).
- The Machine Learning Landscape of Top Taggers, G. Kasieczka, T. Plehn, A. Butter, K. Cranmer, D. Debnath et. al., SciPost Phys. 7 014 (2019) (26 Feb 2019).
- Open is not enough, X. Chen, S. Dallmeier-Tiessen, R. Dasler, S. Feger, P. Fokianos et. al., Nature Phys. 15 (2019) (15 Nov 2018).
- Spotting Black Swans With Ease: The Case for a Practical Reproducibility Platform, Ivo Jimenez, Carlos Maltzahn, st Workshop on Reproducible, Customizable and Portable Workflows for HPC (ResCuE-HPC’18, co-located with SC’18), Dallas, TX, November 11, 2018. (11 Nov 2018).
- Analysis Preservation and Systematic Reinterpretation within the ATLAS experiment, K. Cranmer and L. Heinrich, J.Phys.Conf.Ser. 1085 042011 (2018) (18 Oct 2018).
- Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model, A. Baydin, L. Heinrich, W. Bhimji, L. Shao, S. Naderiparizi et. al., arXiv 1807.07706 (20 Jul 2018).
- Machine Learning in High Energy Physics Community White Paper, K. Albertsson, P. Altoe, D. Anderson, J. Anderson, M. Andrews et. al., J.Phys.Conf.Ser. 1085 022008 (2018) (08 Jul 2018).
- Reproducible Computer Network Experiments: A Case Study Using Popper, Andrea David, Mariette Souppe, Ivo Jimenez, Katia Obraczka, Sam Mansfield, Kerry Veenstra, Carlos Maltzahn, 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems (P-RECS, co-located with HPDC’19), Phoenix, AZ, June 24, 2019. (24 Jun 2018).
- Strategic Plan for a Scientific Software Innovation Institute (S2I2) for High Energy Physics, P. Elmer, M. Neubauer and M. Sokoloff, arXiv 1712.06592 (18 Dec 2017).
- A Roadmap for HEP Software and Computing R&D for the 2020s, J. Albrecht, A. Alves, G. Amadio, G. Andronico, N. Anh-Ky et. al., Comput.Softw.Big Sci. 3 7 (2019) (18 Dec 2017).
- Adversarial Variational Optimization of Non-Differentiable Simulators, G. Louppe, J. Hermans and K. Cranmer, arXiv 1707.07113 (22 Jul 2017).
- Yadage and Packtivity - analysis preservation using parametrized workflows, K. Cranmer and L. Heinrich, J.Phys.Conf.Ser. 898 102019 (2017) (06 Jun 2017).
- HEPData: a repository for high energy physics data, E. Maguire, L. Heinrich and G. Watt, J.Phys.Conf.Ser. 898 102006 (2017) (18 Apr 2017).
- QCD-Aware Recursive Neural Networks for Jet Physics, G. Louppe, K. Cho, C. Becot and K. Cranmer, JHEP 01 057 (2019) (02 Feb 2017).