IRIS-HEP Fellow: Vesal Razavimaleki
Fellowship dates: Jul – Sep, 2020
Home Institution: University of California, San Diego
Project: Adapting GNN Tracking for FPGAs with hls4ml
Graph neural networks (GNNs) have demonstrated promise for pattern recognition problems like particle tracking. To meet the demands of the planned HL-LHC, there has been increased interest in accelerating large machine learning (ML) models with FPGA coprocessors for integration into the L1 trigger. Deployment of neural networks on FPGAs has been studied with the hls4ml compiler package which uses high-level synthesis to convert ML models to FPGA firmware. This project proposes to expand the hls4ml toolkit to support GNNs for particle tracking, allowing them to be implemented in FPGA coprocessor applications possibly including the L1 trigger.More information: My project proposal
Mentors:
-
Javier Duarte (University of California, San Diego)
- 28 Sep 2020 - "Graph Neural Networks for Particle Tracking in FPGAs with hls4m", Vesal Razavimaleki, IRIS-HEP Topical Meetings Recording: Graph Neural Networks for Particle Tracking in FPGAs with hls4m
Current Status
January 2022 - Graduate Research Assistant in Filippini Particle Cosmology Group at University of Illinois Urbana-Champaign
Contact me: